Quadrature formulas based on the scaling function
Applications of Mathematics, Tome 50 (2005) no. 4, pp. 387-399
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The scaling function corresponding to the Daubechies wavelet with two vanishing moments is used to derive new quadrature formulas. This scaling function has the smallest support among all orthonormal scaling functions with the properties $M_2 = M_1^2$ and $M_0 = 1$. So, in this sense, its choice is optimal. Numerical examples are given.
DOI :
10.1007/s10492-005-0029-8
Classification :
41A55, 42C40, 65D30, 65D32, 65T60
Keywords: Daubechies wavelet; quadrature formula
Keywords: Daubechies wavelet; quadrature formula
@article{10_1007_s10492_005_0029_8,
author = {Fin\v{e}k, V\'aclav},
title = {Quadrature formulas based on the scaling function},
journal = {Applications of Mathematics},
pages = {387--399},
publisher = {mathdoc},
volume = {50},
number = {4},
year = {2005},
doi = {10.1007/s10492-005-0029-8},
mrnumber = {2151463},
zbl = {1099.65147},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-005-0029-8/}
}
TY - JOUR AU - Finěk, Václav TI - Quadrature formulas based on the scaling function JO - Applications of Mathematics PY - 2005 SP - 387 EP - 399 VL - 50 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-005-0029-8/ DO - 10.1007/s10492-005-0029-8 LA - en ID - 10_1007_s10492_005_0029_8 ER -
Finěk, Václav. Quadrature formulas based on the scaling function. Applications of Mathematics, Tome 50 (2005) no. 4, pp. 387-399. doi: 10.1007/s10492-005-0029-8
Cité par Sources :