On complete-cocomplete subspaces of an inner product space
Applications of Mathematics, Tome 50 (2005) no. 2, pp. 103-114.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this note we give a measure-theoretic criterion for the completeness of an inner product space. We show that an inner product space $S$ is complete if and only if there exists a $\sigma $-additive state on $C(S)$, the orthomodular poset of complete-cocomplete subspaces of $S$. We then consider the problem of whether every state on $E(S)$, the class of splitting subspaces of $S$, can be extended to a Hilbertian state on $E(\bar{S})$; we show that for the dense hyperplane $S$ (of a separable Hilbert space) constructed by P. Pták and H. Weber in Proc. Am. Math. Soc. 129 (2001), 2111–2117, every state on $E(S)$ is a restriction of a state on $E(\bar{S})$.
DOI : 10.1007/s10492-005-0007-1
Classification : 03G12, 28A12, 46C05, 46N50, 81P10
Keywords: Hilbert space; inner product space; orthogonally closed subspace; complete and cocomplete subspaces; finitely and $\sigma $-additive state
@article{10_1007_s10492_005_0007_1,
     author = {Buhagiar, David and Chetcuti, Emanuel},
     title = {On complete-cocomplete subspaces of an inner product space},
     journal = {Applications of Mathematics},
     pages = {103--114},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2005},
     doi = {10.1007/s10492-005-0007-1},
     mrnumber = {2125153},
     zbl = {1099.81010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-005-0007-1/}
}
TY  - JOUR
AU  - Buhagiar, David
AU  - Chetcuti, Emanuel
TI  - On complete-cocomplete subspaces of an inner product space
JO  - Applications of Mathematics
PY  - 2005
SP  - 103
EP  - 114
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-005-0007-1/
DO  - 10.1007/s10492-005-0007-1
LA  - en
ID  - 10_1007_s10492_005_0007_1
ER  - 
%0 Journal Article
%A Buhagiar, David
%A Chetcuti, Emanuel
%T On complete-cocomplete subspaces of an inner product space
%J Applications of Mathematics
%D 2005
%P 103-114
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-005-0007-1/
%R 10.1007/s10492-005-0007-1
%G en
%F 10_1007_s10492_005_0007_1
Buhagiar, David; Chetcuti, Emanuel. On complete-cocomplete subspaces of an inner product space. Applications of Mathematics, Tome 50 (2005) no. 2, pp. 103-114. doi : 10.1007/s10492-005-0007-1. http://geodesic.mathdoc.fr/articles/10.1007/s10492-005-0007-1/

Cité par Sources :