Voir la notice de l'article provenant de la source Numdam
In this paper we construct an explicit interpolation formula for Schwartz functions on the real line. The formula expresses the value of a function at any given point in terms of the values of the function and its Fourier transform on the set . The functions in the interpolating basis are constructed in a closed form as an integral transform of weakly holomorphic modular forms for the theta subgroup of the modular group.
Radchenko, Danylo 1 ; Viazovska, Maryna 1
@article{PMIHES_2019__129__51_0, author = {Radchenko, Danylo and Viazovska, Maryna}, title = {Fourier interpolation on the real line}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {51--81}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {129}, year = {2019}, doi = {10.1007/s10240-018-0101-z}, mrnumber = {3949027}, zbl = {1455.11075}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-018-0101-z/} }
TY - JOUR AU - Radchenko, Danylo AU - Viazovska, Maryna TI - Fourier interpolation on the real line JO - Publications Mathématiques de l'IHÉS PY - 2019 SP - 51 EP - 81 VL - 129 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-018-0101-z/ DO - 10.1007/s10240-018-0101-z LA - en ID - PMIHES_2019__129__51_0 ER -
%0 Journal Article %A Radchenko, Danylo %A Viazovska, Maryna %T Fourier interpolation on the real line %J Publications Mathématiques de l'IHÉS %D 2019 %P 51-81 %V 129 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://geodesic.mathdoc.fr/articles/10.1007/s10240-018-0101-z/ %R 10.1007/s10240-018-0101-z %G en %F PMIHES_2019__129__51_0
Radchenko, Danylo; Viazovska, Maryna. Fourier interpolation on the real line. Publications Mathématiques de l'IHÉS, Tome 129 (2019), pp. 51-81. doi: 10.1007/s10240-018-0101-z
Cité par Sources :