Voir la notice de l'article provenant de la source Numdam
For a prime , we construct integral models over for Shimura varieties with parahoric level structure, attached to Shimura data of abelian type, such that splits over a tamely ramified extension of . The local structure of these integral models is related to certain “local models”, which are defined group theoretically. Under some additional assumptions, we show that these integral models satisfy a conjecture of Kottwitz which gives an explicit description for the trace of Frobenius action on their sheaf of nearby cycles.
@article{PMIHES_2018__128__121_0, author = {Kisin, M. and Pappas, G.}, title = {Integral models of {Shimura} varieties with parahoric level structure}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {121--218}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {128}, year = {2018}, doi = {10.1007/s10240-018-0100-0}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-018-0100-0/} }
TY - JOUR AU - Kisin, M. AU - Pappas, G. TI - Integral models of Shimura varieties with parahoric level structure JO - Publications Mathématiques de l'IHÉS PY - 2018 SP - 121 EP - 218 VL - 128 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-018-0100-0/ DO - 10.1007/s10240-018-0100-0 LA - en ID - PMIHES_2018__128__121_0 ER -
%0 Journal Article %A Kisin, M. %A Pappas, G. %T Integral models of Shimura varieties with parahoric level structure %J Publications Mathématiques de l'IHÉS %D 2018 %P 121-218 %V 128 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://geodesic.mathdoc.fr/articles/10.1007/s10240-018-0100-0/ %R 10.1007/s10240-018-0100-0 %G en %F PMIHES_2018__128__121_0
Kisin, M.; Pappas, G. Integral models of Shimura varieties with parahoric level structure. Publications Mathématiques de l'IHÉS, Tome 128 (2018), pp. 121-218. doi: 10.1007/s10240-018-0100-0
Cité par Sources :