Integral models of Shimura varieties with parahoric level structure
Publications Mathématiques de l'IHÉS, Tome 128 (2018), pp. 121-218
Cet article a éte moissonné depuis la source Numdam
For a prime , we construct integral models over for Shimura varieties with parahoric level structure, attached to Shimura data of abelian type, such that splits over a tamely ramified extension of . The local structure of these integral models is related to certain “local models”, which are defined group theoretically. Under some additional assumptions, we show that these integral models satisfy a conjecture of Kottwitz which gives an explicit description for the trace of Frobenius action on their sheaf of nearby cycles.
@article{PMIHES_2018__128__121_0,
author = {Kisin, M. and Pappas, G.},
title = {Integral models of {Shimura} varieties with parahoric level structure},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {121--218},
year = {2018},
publisher = {Springer Berlin Heidelberg},
address = {Berlin/Heidelberg},
volume = {128},
doi = {10.1007/s10240-018-0100-0},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-018-0100-0/}
}
TY - JOUR AU - Kisin, M. AU - Pappas, G. TI - Integral models of Shimura varieties with parahoric level structure JO - Publications Mathématiques de l'IHÉS PY - 2018 SP - 121 EP - 218 VL - 128 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-018-0100-0/ DO - 10.1007/s10240-018-0100-0 LA - en ID - PMIHES_2018__128__121_0 ER -
%0 Journal Article %A Kisin, M. %A Pappas, G. %T Integral models of Shimura varieties with parahoric level structure %J Publications Mathématiques de l'IHÉS %D 2018 %P 121-218 %V 128 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://geodesic.mathdoc.fr/articles/10.1007/s10240-018-0100-0/ %R 10.1007/s10240-018-0100-0 %G en %F PMIHES_2018__128__121_0
Kisin, M.; Pappas, G. Integral models of Shimura varieties with parahoric level structure. Publications Mathématiques de l'IHÉS, Tome 128 (2018), pp. 121-218. doi: 10.1007/s10240-018-0100-0
Cité par Sources :
