Voir la notice de l'article provenant de la source Numdam
We prove some ergodic-theoretic rigidity properties of the action of on moduli space. In particular, we show that any ergodic measure invariant under the action of the upper triangular subgroup of is supported on an invariant affine submanifold.
The main theorems are inspired by the results of several authors on unipotent flows on homogeneous spaces, and in particular by Ratner’s seminal work.
@article{PMIHES_2018__127__95_0, author = {Eskin, Alex and Mirzakhani, Maryam}, title = {Invariant and stationary measures for the $\mathrm{SL} (2 , \mathbb{R})$ action on {Moduli} space}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {95--324}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {127}, year = {2018}, doi = {10.1007/s10240-018-0099-2}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-018-0099-2/} }
TY - JOUR AU - Eskin, Alex AU - Mirzakhani, Maryam TI - Invariant and stationary measures for the $\mathrm{SL} (2 , \mathbb{R})$ action on Moduli space JO - Publications Mathématiques de l'IHÉS PY - 2018 SP - 95 EP - 324 VL - 127 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-018-0099-2/ DO - 10.1007/s10240-018-0099-2 LA - en ID - PMIHES_2018__127__95_0 ER -
%0 Journal Article %A Eskin, Alex %A Mirzakhani, Maryam %T Invariant and stationary measures for the $\mathrm{SL} (2 , \mathbb{R})$ action on Moduli space %J Publications Mathématiques de l'IHÉS %D 2018 %P 95-324 %V 127 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://geodesic.mathdoc.fr/articles/10.1007/s10240-018-0099-2/ %R 10.1007/s10240-018-0099-2 %G en %F PMIHES_2018__127__95_0
Eskin, Alex; Mirzakhani, Maryam. Invariant and stationary measures for the $\mathrm{SL} (2 , \mathbb{R})$ action on Moduli space. Publications Mathématiques de l'IHÉS, Tome 127 (2018), pp. 95-324. doi: 10.1007/s10240-018-0099-2
Cité par Sources :