Percolation of random nodal lines
Publications Mathématiques de l'IHÉS, Tome 126 (2017), pp. 131-176

Voir la notice de l'article provenant de la source Numdam

We prove a Russo-Seymour-Welsh percolation theorem for nodal domains and nodal lines associated to a natural infinite dimensional space of real analytic functions on the real plane. More precisely, let U be a smooth connected bounded open set in R2 and γ,γ two disjoint arcs of positive length in the boundary of U. We prove that there exists a positive constant c, such that for any positive scale s, with probability at least c there exists a connected component of the set {xU¯,f(sx)>0} intersecting both γ and γ, where f is a random analytic function in the Wiener space associated to the real Bargmann-Fock space. For s large enough, the same conclusion holds for the zero set {xU¯,f(sx)=0}. As an important intermediate result, we prove that sign percolation for a general stationary Gaussian field can be made equivalent to a correlated percolation model on a lattice.

DOI : 10.1007/s10240-017-0093-0

Beffara, Vincent 1 ; Gayet, Damien 1

1 Univ. Grenoble Alpes, CNRS, Institut Fourier 38000 Grenoble France
@article{PMIHES_2017__126__131_0,
     author = {Beffara, Vincent and Gayet, Damien},
     title = {Percolation of random nodal lines},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {131--176},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {126},
     year = {2017},
     doi = {10.1007/s10240-017-0093-0},
     mrnumber = {3735866},
     zbl = {1412.60131},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-017-0093-0/}
}
TY  - JOUR
AU  - Beffara, Vincent
AU  - Gayet, Damien
TI  - Percolation of random nodal lines
JO  - Publications Mathématiques de l'IHÉS
PY  - 2017
SP  - 131
EP  - 176
VL  - 126
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-017-0093-0/
DO  - 10.1007/s10240-017-0093-0
LA  - en
ID  - PMIHES_2017__126__131_0
ER  - 
%0 Journal Article
%A Beffara, Vincent
%A Gayet, Damien
%T Percolation of random nodal lines
%J Publications Mathématiques de l'IHÉS
%D 2017
%P 131-176
%V 126
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-017-0093-0/
%R 10.1007/s10240-017-0093-0
%G en
%F PMIHES_2017__126__131_0
Beffara, Vincent; Gayet, Damien. Percolation of random nodal lines. Publications Mathématiques de l'IHÉS, Tome 126 (2017), pp. 131-176. doi: 10.1007/s10240-017-0093-0

Cité par Sources :