On the hyperbolicity of general hypersurfaces
Publications Mathématiques de l'IHÉS, Tome 126 (2017), pp. 1-34.

Voir la notice de l'article provenant de la source Numdam

In 1970, Kobayashi conjectured that general hypersurfaces of sufficiently large degree in Pn are hyperbolic. In this paper we prove that a general sufficiently ample hypersurface in a smooth projective variety is hyperbolic. To prove this statement, we construct hypersurfaces satisfying a property which is Zariski open and which implies hyperbolicity. These hypersurfaces are chosen such that the geometry of their higher order jet spaces can be related to the geometry of a universal family of complete intersections. To do so, we introduce a Wronskian construction which associates a (twisted) jet differential to every finite family of global sections of a line bundle.

DOI : 10.1007/s10240-017-0090-3

Brotbek, Damian 1

1 Institut de Recherche Mathématique Avancée, Université de Strasbourg Strasbourg France
@article{PMIHES_2017__126__1_0,
     author = {Brotbek, Damian},
     title = {On the hyperbolicity of general hypersurfaces},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--34},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {126},
     year = {2017},
     doi = {10.1007/s10240-017-0090-3},
     mrnumber = {3735863},
     zbl = {1458.32022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-017-0090-3/}
}
TY  - JOUR
AU  - Brotbek, Damian
TI  - On the hyperbolicity of general hypersurfaces
JO  - Publications Mathématiques de l'IHÉS
PY  - 2017
SP  - 1
EP  - 34
VL  - 126
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-017-0090-3/
DO  - 10.1007/s10240-017-0090-3
LA  - en
ID  - PMIHES_2017__126__1_0
ER  - 
%0 Journal Article
%A Brotbek, Damian
%T On the hyperbolicity of general hypersurfaces
%J Publications Mathématiques de l'IHÉS
%D 2017
%P 1-34
%V 126
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-017-0090-3/
%R 10.1007/s10240-017-0090-3
%G en
%F PMIHES_2017__126__1_0
Brotbek, Damian. On the hyperbolicity of general hypersurfaces. Publications Mathématiques de l'IHÉS, Tome 126 (2017), pp. 1-34. doi : 10.1007/s10240-017-0090-3. http://geodesic.mathdoc.fr/articles/10.1007/s10240-017-0090-3/

[1.] Benoist, O. Le théorème de Bertini en famille, Bull. Soc. Math. Fr., Volume 139 (2011), pp. 555-569 | DOI | Zbl | mathdoc-id

[2.] G. Berczi, Towards the Green-Griffiths-Lang conjecture via equivariant localisation. ArXiv e-prints, 2015.

[3.] Brody, R. Compact manifolds and hyperbolicity, Trans. Am. Math. Soc., Volume 235 (1978), pp. 213-219 | MR | Zbl

[4.] Brody, R.; Green, M. A family of smooth hyperbolic hypersurfaces in P3, Duke Math. J., Volume 44 (1977), pp. 873-874 | MR | DOI | Zbl

[5.] Brotbek, D. Hyperbolicity related problems for complete intersection varieties, Compos. Math., Volume 150 (2014), pp. 369-395 | MR | DOI | Zbl

[6.] Brotbek, D. Symmetric differential forms on complete intersection varieties and applications, Math. Ann., Volume 366 (2016), pp. 417-446 | MR | DOI | Zbl

[7.] D. Brotbek and L. Darondeau, Complete intersection varieties with ample cotangent bundles. ArXiv e-prints, 2015.

[8.] Clemens, H. Curves on generic hypersurfaces, Ann. Sci. Éc. Norm. Super. (4), Volume 19 (1986), pp. 629-636 | DOI | MR | Zbl | mathdoc-id

[9.] Darondeau, L. On the logarithmic Green–Griffiths conjecture, Int. Math. Res. Not., Volume 2016 (2016), pp. 1871-1923 | MR | DOI | Zbl

[10.] Darondeau, L. Slanted vector fields for jet spaces, Math. Z., Volume 282 (2016), pp. 547-575 | MR | DOI | Zbl

[11.] Debarre, O. Varieties with ample cotangent bundle, Compos. Math., Volume 141 (2005), pp. 1445-1459 | MR | DOI | Zbl

[12.] J.-P. Demailly, Recent progress towards the Kobayashi and Green-Griffiths-Lang conjectures. Manuscript Institut Fourier. Available at: http://www-fourier.ujf-grenoble.fr/~demailly/preprints.html.

[13.] Demailly, J.-P. Holomorphic Morse inequalities, Several Complex Variables and Complex Geometry, Part 2 (1991), pp. 93-114 | DOI

[14.] Demailly, J.-P. Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, Algebraic Geometry (1997), pp. 285-360

[15.] Demailly, J.-P. Variétés hyperboliques et équations différentielles algébriques, Gaz. Math., Volume 73 (1997), pp. 3-23 | MR | Zbl

[16.] Demailly, J.-P. Holomorphic Morse inequalities and the Green-Griffiths-Lang conjecture, Pure Appl. Math. Q., Volume 7 (2011), pp. 1165-1207 (Special Issue: In memory of Eckart Viehweg) | MR | DOI | Zbl

[17.] J.-P. Demailly, Towards the Green-Griffiths-Lang conjecture. ArXiv e-prints, 2014.

[18.] J.-P. Demailly, Proof of the Kobayashi conjecture on the hyperbolicity of very general hypersurfaces. ArXiv e-prints, 2015.

[19.] Demailly, J.-P.; El Goul, J. Connexions méromorphes projectives partielles et variétés algébriques hyperboliques, C. R. Acad. Sci. Paris, Sér. I, Math., Volume 324 (1997), pp. 1385-1390 | MR | DOI | Zbl

[20.] Demailly, J.-P.; El Goul, J. Hyperbolicity of generic surfaces of high degree in projective 3-space, Am. J. Math., Volume 122 (2000), pp. 515-546 | MR | DOI | Zbl

[21.] Y. Deng, Effectivity in the Hyperbolicity-related problems. ArXiv e-prints, 2016.

[22.] Y. Deng, On the Diverio-Trapani Conjecture. ArXiv e-prints, 2017.

[23.] Diverio, S. Differential equations on complex projective hypersurfaces of low dimension, Compos. Math., Volume 144 (2008), pp. 920-932 | MR | DOI | Zbl

[24.] Diverio, S. Existence of global invariant jet differentials on projective hypersurfaces of high degree, Math. Ann., Volume 344 (2009), pp. 293-315 | MR | DOI | Zbl

[25.] Diverio, S.; Merker, J.; Rousseau, E. Effective algebraic degeneracy, Invent. Math., Volume 180 (2010), pp. 161-223 | MR | DOI | Zbl

[26.] Diverio, S.; Rousseau, E. The exceptional set and the Green-Griffiths locus do not always coincide, Enseign. Math., Volume 61 (2015), pp. 417-452 | MR | DOI | Zbl

[27.] Diverio, S.; Trapani, S. A remark on the codimension of the Green-Griffiths locus of generic projective hypersurfaces of high degree, J. Reine Angew. Math., Volume 649 (2010), pp. 55-61 | MR | Zbl

[28.] Ein, L. Subvarieties of generic complete intersections, Invent. Math., Volume 94 (1988), pp. 163-169 | MR | DOI | Zbl

[29.] Ein, L. Subvarieties of generic complete intersections. II, Math. Ann., Volume 289 (1991), pp. 465-471 | MR | DOI | Zbl

[30.] El Goul, J. Algebraic families of smooth hyperbolic surfaces of low degree in PC3, Manuscr. Math., Volume 90 (1996), pp. 521-532 | MR | DOI | Zbl

[31.] Galbura, G. Il wronskiano di un sistema di sezioni di un fibrato vettoriale di rango i sopra una curva algebrica ed il relativo divisore di Brill-Severi, Ann. Mat. Pura Appl. (4), Volume 98 (1974), pp. 349-355 | MR | DOI | Zbl

[32.] Green, M.; Griffiths, P. Two applications of algebraic geometry to entire holomorphic mappings, The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979) (1980), pp. 41-74 | DOI

[33.] Harris, J. Algebraic Geometry (1995) (A first course, Corrected reprint of the 1992 original)

[34.] Kobayashi, S. Hyperbolic Manifolds and Holomorphic Mappings (1970) | Zbl

[35.] Kobayashi, S. Hyperbolic Complex Spaces (1998) | Zbl

[36.] Kollár, J. Lectures on Resolution of Singularities (2007) | Zbl

[37.] Laksov, D. Wronskians and Plücker formulas for linear systems on curves, Ann. Sci. Éc. Norm. Supér. (4), Volume 17 (1984), pp. 45-66 | DOI | Zbl | mathdoc-id

[38.] Lang, S. Hyperbolic and Diophantine analysis, Bull., New Ser., Am. Math. Soc., Volume 14 (1986), pp. 159-205 | MR | DOI | Zbl

[39.] Masuda, K.; Noguchi, J. A construction of hyperbolic hypersurface of Pn(C), Math. Ann., Volume 304 (1996), pp. 339-362 | MR | DOI | Zbl

[40.] McQuillan, M. Diophantine approximations and foliations, Publ. Math. IHÉS, Volume 87 (1998), pp. 121-174 | MR | DOI | Zbl

[41.] McQuillan, M. Holomorphic curves on hyperplane sections of 3-folds, Geom. Funct. Anal., Volume 9 (1999), pp. 370-392 | MR | DOI | Zbl

[42.] Merker, J. Low pole order frames on vertical jets of the universal hypersurface, Ann. Inst. Fourier (Grenoble), Volume 59 (2009), pp. 1077-1104 | DOI | MR | Zbl | mathdoc-id

[43.] Merker, J. Algebraic differential equations for entire holomorphic curves in projective hypersurfaces of general type: Optimal lower degree bound, Geometry and Analysis on Manifolds (2015), pp. 41-142

[44.] Nadel, A. M. Hyperbolic surfaces in P3, Duke Math. J., Volume 58 (1989), pp. 749-771 | MR | DOI | Zbl

[45.] Nakamaye, M. Stable base loci of linear series, Math. Ann., Volume 318 (2000), pp. 837-847 | MR | DOI | Zbl

[46.] Noguchi, J. Meromorphic mappings into a compact complex space, Hiroshima Math. J., Volume 7 (1977), pp. 411-425 | MR | Zbl

[47.] Noguchi, J. Nevanlinna-Cartan theory over function fields and a Diophantine equation, J. Reine Angew. Math., Volume 487 (1997), pp. 61-83 | MR | Zbl

[48.] Noguchi, J. Connections and the second main theorem for holomorphic curves, J. Math. Sci. Univ. Tokyo, Volume 18 (2011), pp. 155-180 | MR | Zbl

[49.] Noguchi, J.; Winkelmann, J. Nevanlinna Theory in Several Complex Variables and Diophantine Approximation (2014) | Zbl

[50.] Pacienza, G. Subvarieties of general type on a general projective hypersurface, Trans. Am. Math. Soc., Volume 356 (2004), pp. 2649-2661 (electronic) | MR | DOI | Zbl

[51.] Păun, M. Vector fields on the total space of hypersurfaces in the projective space and hyperbolicity, Math. Ann., Volume 340 (2008), pp. 875-892 | MR | DOI | Zbl

[52.] Păun, M. Techniques de construction de différentielles holomorphes et hyperbolicité (d’après J.-P. Demailly, S. Diverio, J. Merker, E. Rousseau, Y.-T. Siu…), Astérisque, Volume 361 (2014), pp. 77-113 (Exp. No. 1061, vii) | Zbl | mathdoc-id

[53.] Rousseau, E. Équations différentielles sur les hypersurfaces de P4, J. Math. Pures Appl. (9), Volume 86 (2006), pp. 322-341 | MR | DOI | Zbl

[54.] Rousseau, E. Weak analytic hyperbolicity of generic hypersurfaces of high degree in P4, Ann. Fac. Sci. Toulouse Math. (6), Volume 16 (2007), pp. 369-383 | DOI | MR | Zbl | mathdoc-id

[55.] Greenlees Semple, J. Some investigations in the geometry of curve and surface elements, Proc. Lond. Math. Soc., Volume 3 (1954), pp. 24-49 | MR | DOI | Zbl

[56.] Shiffman, B.; Zaidenberg, M. Hyperbolic hypersurfaces in Pn of Fermat-Waring type, Proc. Am. Math. Soc., Volume 130 (2002), pp. 2031-2035 (electronic) | MR | DOI | Zbl

[57.] Siu, Y. Noether-Lasker decomposition of coherent analytic subsheaves, Trans. Am. Math. Soc., Volume 135 (1969), pp. 375-385 | MR | DOI | Zbl

[58.] Tong Siu, Y. Defect relations for holomorphic maps between spaces of different dimensions, Duke Math. J., Volume 55 (1987), pp. 213-251 | MR | DOI | Zbl

[59.] Siu, Y.-T. Hyperbolicity in complex geometry, The Legacy of Niels Henrik Abel (2004), pp. 543-566 | DOI

[60.] Siu, Y.-T. Hyperbolicity of generic high-degree hypersurfaces in complex projective space, Invent. Math., Volume 202 (2015), pp. 1069-1166 | MR | DOI | Zbl

[61.] Siu, Y.-T.; Yeung, S.-K. Defects for ample divisors of abelian varieties, Schwarz lemma, and hyperbolic hypersurfaces of low degrees, Am. J. Math., Volume 119 (1997), pp. 1139-1172 | MR | DOI | Zbl

[62.] Voisin, C. On a conjecture of Clemens on rational curves on hypersurfaces, J. Differ. Geom., Volume 44 (1996), pp. 200-213 | MR | DOI | Zbl

[63.] S.-Y. Xie, On the ampleness of the cotangent bundles of complete intersections, ArXiv e-prints | arXiv

[64.] S.-Y. Xie, Generalized Brotbek’s symmetric differential forms and applications. ArXiv e-prints, 2016.

[65.] Mikhail, Z. The complement to a general hypersurface of degree 2n in CPn is not hyperbolic, Sib. Mat. Zh., Volume 28 (1987), pp. 91-100 (222) | MR

[66.] Z. Mikhail, Hyperbolic surfaces in P3: Examples, ArXiv Mathematics e-prints, 2003.

Cité par Sources :