Double ramification cycles on the moduli spaces of curves
Publications Mathématiques de l'IHÉS, Tome 125 (2017), pp. 221-266

Voir la notice de l'article provenant de la source Numdam

Curves of genus g which admit a map to P1 with specified ramification profile μ over 0P1 and ν over P1 define a double ramification cycle DRg(μ,ν) on the moduli space of curves. The study of the restrictions of these cycles to the moduli of nonsingular curves is a classical topic. In 2003, Hain calculated the cycles for curves of compact type. We study here double ramification cycles on the moduli space of Deligne-Mumford stable curves.

The cycle DRg(μ,ν) for stable curves is defined via the virtual fundamental class of the moduli of stable maps to rubber. Our main result is the proof of an explicit formula for DRg(μ,ν) in the tautological ring conjectured by Pixton in 2014. The formula expresses the double ramification cycle as a sum over stable graphs (corresponding to strata classes) with summand equal to a product over markings and edges. The result answers a question of Eliashberg from 2001 and specializes to Hain’s formula in the compact type case.

When μ=ν=, the formula for double ramification cycles expresses the top Chern class λg of the Hodge bundle of Mg as a push-forward of tautological classes supported on the divisor of non-separating nodes. Applications to Hodge integral calculations are given.

DOI : 10.1007/s10240-017-0088-x

Janda, F. 1 ; Pandharipande, R. 2 ; Pixton, A. 3 ; Zvonkine, D. 4

1 Department of Mathematics, University of Michigan Ann Arbor USA
2 Departement Mathematik, ETH Zürich Zürich Switzerland
3 Department of Mathematics, MIT Cambridge USA
4 Institut de Mathématiques de Jussieu, CNRS Paris France
@article{PMIHES_2017__125__221_0,
     author = {Janda, F. and Pandharipande, R. and Pixton, A. and Zvonkine, D.},
     title = {Double ramification cycles on the moduli spaces of curves},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {221--266},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {125},
     year = {2017},
     doi = {10.1007/s10240-017-0088-x},
     mrnumber = {3668650},
     zbl = {1370.14029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-017-0088-x/}
}
TY  - JOUR
AU  - Janda, F.
AU  - Pandharipande, R.
AU  - Pixton, A.
AU  - Zvonkine, D.
TI  - Double ramification cycles on the moduli spaces of curves
JO  - Publications Mathématiques de l'IHÉS
PY  - 2017
SP  - 221
EP  - 266
VL  - 125
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-017-0088-x/
DO  - 10.1007/s10240-017-0088-x
LA  - en
ID  - PMIHES_2017__125__221_0
ER  - 
%0 Journal Article
%A Janda, F.
%A Pandharipande, R.
%A Pixton, A.
%A Zvonkine, D.
%T Double ramification cycles on the moduli spaces of curves
%J Publications Mathématiques de l'IHÉS
%D 2017
%P 221-266
%V 125
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-017-0088-x/
%R 10.1007/s10240-017-0088-x
%G en
%F PMIHES_2017__125__221_0
Janda, F.; Pandharipande, R.; Pixton, A.; Zvonkine, D. Double ramification cycles on the moduli spaces of curves. Publications Mathématiques de l'IHÉS, Tome 125 (2017), pp. 221-266. doi: 10.1007/s10240-017-0088-x

Cité par Sources :