Voir la notice de l'article provenant de la source Numdam
Curves of genus which admit a map to with specified ramification profile over and over define a double ramification cycle on the moduli space of curves. The study of the restrictions of these cycles to the moduli of nonsingular curves is a classical topic. In 2003, Hain calculated the cycles for curves of compact type. We study here double ramification cycles on the moduli space of Deligne-Mumford stable curves.
The cycle for stable curves is defined via the virtual fundamental class of the moduli of stable maps to rubber. Our main result is the proof of an explicit formula for in the tautological ring conjectured by Pixton in 2014. The formula expresses the double ramification cycle as a sum over stable graphs (corresponding to strata classes) with summand equal to a product over markings and edges. The result answers a question of Eliashberg from 2001 and specializes to Hain’s formula in the compact type case.
When , the formula for double ramification cycles expresses the top Chern class of the Hodge bundle of as a push-forward of tautological classes supported on the divisor of non-separating nodes. Applications to Hodge integral calculations are given.
Janda, F. 1 ; Pandharipande, R. 2 ; Pixton, A. 3 ; Zvonkine, D. 4
@article{PMIHES_2017__125__221_0, author = {Janda, F. and Pandharipande, R. and Pixton, A. and Zvonkine, D.}, title = {Double ramification cycles on the moduli spaces of curves}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {221--266}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {125}, year = {2017}, doi = {10.1007/s10240-017-0088-x}, mrnumber = {3668650}, zbl = {1370.14029}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-017-0088-x/} }
TY - JOUR AU - Janda, F. AU - Pandharipande, R. AU - Pixton, A. AU - Zvonkine, D. TI - Double ramification cycles on the moduli spaces of curves JO - Publications Mathématiques de l'IHÉS PY - 2017 SP - 221 EP - 266 VL - 125 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-017-0088-x/ DO - 10.1007/s10240-017-0088-x LA - en ID - PMIHES_2017__125__221_0 ER -
%0 Journal Article %A Janda, F. %A Pandharipande, R. %A Pixton, A. %A Zvonkine, D. %T Double ramification cycles on the moduli spaces of curves %J Publications Mathématiques de l'IHÉS %D 2017 %P 221-266 %V 125 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://geodesic.mathdoc.fr/articles/10.1007/s10240-017-0088-x/ %R 10.1007/s10240-017-0088-x %G en %F PMIHES_2017__125__221_0
Janda, F.; Pandharipande, R.; Pixton, A.; Zvonkine, D. Double ramification cycles on the moduli spaces of curves. Publications Mathématiques de l'IHÉS, Tome 125 (2017), pp. 221-266. doi: 10.1007/s10240-017-0088-x
Cité par Sources :