Voir la notice de l'article provenant de la source Numdam
We obtain a dichotomy for -generic, volume-preserving diffeomorphisms: either all the Lyapunov exponents of almost every point vanish or the volume is ergodic and non-uniformly Anosov (i.e. nonuniformly hyperbolic and the splitting into stable and unstable spaces is dominated). This completes a program first put forth by Ricardo Mañé.
Avila, A. 1, 2 ; Crovisier, S. 3 ; Wilkinson, A. 4
@article{PMIHES_2016__124__319_0, author = {Avila, A. and Crovisier, S. and Wilkinson, A.}, title = {Diffeomorphisms with positive metric entropy}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {319--347}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {124}, year = {2016}, doi = {10.1007/s10240-016-0086-4}, mrnumber = {3578917}, zbl = {1362.37017}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-016-0086-4/} }
TY - JOUR AU - Avila, A. AU - Crovisier, S. AU - Wilkinson, A. TI - Diffeomorphisms with positive metric entropy JO - Publications Mathématiques de l'IHÉS PY - 2016 SP - 319 EP - 347 VL - 124 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-016-0086-4/ DO - 10.1007/s10240-016-0086-4 LA - en ID - PMIHES_2016__124__319_0 ER -
%0 Journal Article %A Avila, A. %A Crovisier, S. %A Wilkinson, A. %T Diffeomorphisms with positive metric entropy %J Publications Mathématiques de l'IHÉS %D 2016 %P 319-347 %V 124 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://geodesic.mathdoc.fr/articles/10.1007/s10240-016-0086-4/ %R 10.1007/s10240-016-0086-4 %G en %F PMIHES_2016__124__319_0
Avila, A.; Crovisier, S.; Wilkinson, A. Diffeomorphisms with positive metric entropy. Publications Mathématiques de l'IHÉS, Tome 124 (2016), pp. 319-347. doi: 10.1007/s10240-016-0086-4
Cité par Sources :