Diffeomorphisms with positive metric entropy
Publications Mathématiques de l'IHÉS, Tome 124 (2016), pp. 319-347

Voir la notice de l'article provenant de la source Numdam

We obtain a dichotomy for C1-generic, volume-preserving diffeomorphisms: either all the Lyapunov exponents of almost every point vanish or the volume is ergodic and non-uniformly Anosov (i.e. nonuniformly hyperbolic and the splitting into stable and unstable spaces is dominated). This completes a program first put forth by Ricardo Mañé.

DOI : 10.1007/s10240-016-0086-4

Avila, A. 1, 2 ; Crovisier, S. 3 ; Wilkinson, A. 4

1 CNRS, IMJ-PRG, UMR 7586, Univ. Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06 75013 Paris France
2 IMPA, Estrada Dona Castorina 110 Rio de Janeiro Brazil
3 CNRS, Laboratoire de Mathématiques d’Orsay, UMR 8628, Université Paris-Sud 11 91405 Orsay Cedex France
4 Department of Mathematics, University of Chicago 5734 S. University Avenue 60637 Chicago IL USA
@article{PMIHES_2016__124__319_0,
     author = {Avila, A. and Crovisier, S. and Wilkinson, A.},
     title = {Diffeomorphisms with positive metric entropy},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {319--347},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {124},
     year = {2016},
     doi = {10.1007/s10240-016-0086-4},
     mrnumber = {3578917},
     zbl = {1362.37017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-016-0086-4/}
}
TY  - JOUR
AU  - Avila, A.
AU  - Crovisier, S.
AU  - Wilkinson, A.
TI  - Diffeomorphisms with positive metric entropy
JO  - Publications Mathématiques de l'IHÉS
PY  - 2016
SP  - 319
EP  - 347
VL  - 124
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-016-0086-4/
DO  - 10.1007/s10240-016-0086-4
LA  - en
ID  - PMIHES_2016__124__319_0
ER  - 
%0 Journal Article
%A Avila, A.
%A Crovisier, S.
%A Wilkinson, A.
%T Diffeomorphisms with positive metric entropy
%J Publications Mathématiques de l'IHÉS
%D 2016
%P 319-347
%V 124
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-016-0086-4/
%R 10.1007/s10240-016-0086-4
%G en
%F PMIHES_2016__124__319_0
Avila, A.; Crovisier, S.; Wilkinson, A. Diffeomorphisms with positive metric entropy. Publications Mathématiques de l'IHÉS, Tome 124 (2016), pp. 319-347. doi: 10.1007/s10240-016-0086-4

Cité par Sources :