Voir la notice de l'article provenant de la source Numdam
This paper is about the Fukaya category of a Fano hypersurface . Because these symplectic manifolds are monotone, both the analysis and the algebra involved in the definition of the Fukaya category simplify considerably. The first part of the paper is devoted to establishing the main structures of the Fukaya category in the monotone case: the closed–open string maps, weak proper Calabi–Yau structure, Abouzaid’s split-generation criterion, and their analogues when weak bounding cochains are included. We then turn to computations of the Fukaya category of the hypersurface : we construct a configuration of monotone Lagrangian spheres in , and compute the associated disc potential. The result coincides with the Hori–Vafa superpotential for the mirror of (up to a constant shift in the Fano index 1 case). As a consequence, we give a proof of Kontsevich’s homological mirror symmetry conjecture for . We also explain how to extract non-trivial information about Gromov–Witten invariants of from its Fukaya category.
Sheridan, Nick 1
@article{PMIHES_2016__124__165_0, author = {Sheridan, Nick}, title = {On the {Fukaya} category of a {Fano} hypersurface in projective space}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {165--317}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {124}, year = {2016}, doi = {10.1007/s10240-016-0082-8}, mrnumber = {3578916}, zbl = {1453.53079}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-016-0082-8/} }
TY - JOUR AU - Sheridan, Nick TI - On the Fukaya category of a Fano hypersurface in projective space JO - Publications Mathématiques de l'IHÉS PY - 2016 SP - 165 EP - 317 VL - 124 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-016-0082-8/ DO - 10.1007/s10240-016-0082-8 LA - en ID - PMIHES_2016__124__165_0 ER -
%0 Journal Article %A Sheridan, Nick %T On the Fukaya category of a Fano hypersurface in projective space %J Publications Mathématiques de l'IHÉS %D 2016 %P 165-317 %V 124 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://geodesic.mathdoc.fr/articles/10.1007/s10240-016-0082-8/ %R 10.1007/s10240-016-0082-8 %G en %F PMIHES_2016__124__165_0
Sheridan, Nick. On the Fukaya category of a Fano hypersurface in projective space. Publications Mathématiques de l'IHÉS, Tome 124 (2016), pp. 165-317. doi: 10.1007/s10240-016-0082-8
Cité par Sources :