Voir la notice de l'article provenant de la source Numdam
Let be a regular local ring containing an infinite field. Let be a reductive group scheme over . We prove that a principal -bundle over is trivial if it is trivial over the fraction field of . In other words, if is the fraction field of , then the map of non-abelian cohomology pointed sets
Fedorov, Roman 1 ; Panin, Ivan 2
@article{PMIHES_2015__122__169_0, author = {Fedorov, Roman and Panin, Ivan}, title = {A proof of the {Grothendieck{\textendash}Serre} conjecture on principal bundles over regular local rings containing infinite fields}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {169--193}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {122}, year = {2015}, doi = {10.1007/s10240-015-0075-z}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-015-0075-z/} }
TY - JOUR AU - Fedorov, Roman AU - Panin, Ivan TI - A proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields JO - Publications Mathématiques de l'IHÉS PY - 2015 SP - 169 EP - 193 VL - 122 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-015-0075-z/ DO - 10.1007/s10240-015-0075-z LA - en ID - PMIHES_2015__122__169_0 ER -
%0 Journal Article %A Fedorov, Roman %A Panin, Ivan %T A proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields %J Publications Mathématiques de l'IHÉS %D 2015 %P 169-193 %V 122 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://geodesic.mathdoc.fr/articles/10.1007/s10240-015-0075-z/ %R 10.1007/s10240-015-0075-z %G en %F PMIHES_2015__122__169_0
Fedorov, Roman; Panin, Ivan. A proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields. Publications Mathématiques de l'IHÉS, Tome 122 (2015), pp. 169-193. doi: 10.1007/s10240-015-0075-z
Cité par Sources :