A proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields
Publications Mathématiques de l'IHÉS, Tome 122 (2015), pp. 169-193

Voir la notice de l'article provenant de la source Numdam

Let R be a regular local ring containing an infinite field. Let G be a reductive group scheme over R. We prove that a principal G-bundle over R is trivial if it is trivial over the fraction field of R. In other words, if K is the fraction field of R, then the map of non-abelian cohomology pointed sets

He´t1(R,G)He´t1(K,G)
induced by the inclusion of R into K has a trivial kernel.

DOI : 10.1007/s10240-015-0075-z
Keywords: Algebraic Group, Group Scheme, Principal Bundle, Monic Polynomial, Closed Subscheme

Fedorov, Roman 1 ; Panin, Ivan 2

1 Mathematics Department, Kansas State University 138 Cardwell Hall 66506 Manhattan KS USA
2 Steklov Institute of Mathematics at St.-Petersburg Fontanka 27 191023 St.-Petersburg Russia
@article{PMIHES_2015__122__169_0,
     author = {Fedorov, Roman and Panin, Ivan},
     title = {A proof of the {Grothendieck{\textendash}Serre} conjecture on principal bundles over regular local rings containing infinite fields},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {169--193},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {122},
     year = {2015},
     doi = {10.1007/s10240-015-0075-z},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-015-0075-z/}
}
TY  - JOUR
AU  - Fedorov, Roman
AU  - Panin, Ivan
TI  - A proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields
JO  - Publications Mathématiques de l'IHÉS
PY  - 2015
SP  - 169
EP  - 193
VL  - 122
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-015-0075-z/
DO  - 10.1007/s10240-015-0075-z
LA  - en
ID  - PMIHES_2015__122__169_0
ER  - 
%0 Journal Article
%A Fedorov, Roman
%A Panin, Ivan
%T A proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields
%J Publications Mathématiques de l'IHÉS
%D 2015
%P 169-193
%V 122
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-015-0075-z/
%R 10.1007/s10240-015-0075-z
%G en
%F PMIHES_2015__122__169_0
Fedorov, Roman; Panin, Ivan. A proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields. Publications Mathématiques de l'IHÉS, Tome 122 (2015), pp. 169-193. doi: 10.1007/s10240-015-0075-z

Cité par Sources :