Harmonic discs of solutions to the complex homogeneous Monge-Ampère equation
Publications Mathématiques de l'IHÉS, Tome 122 (2015), pp. 315-335

Voir la notice de l'article provenant de la source Numdam

We study regularity properties of solutions to the Dirichlet problem for the complex Homogeneous Monge-Ampère equation. We show that for certain boundary data on P1 the solution Φ to this Dirichlet problem is connected via a Legendre transform to an associated flow in the complex plane called the Hele-Shaw flow. Using this we determine precisely the harmonic discs associated to Φ. We then give examples for which these discs are not dense in the product, and also prove that this situation persists after small perturbations of the boundary data.

DOI : 10.1007/s10240-015-0074-0
Keywords: Weak Solution, Dirichlet Problem, Regular Solution, Boundary Data, Boundary Component

Ross, Julius 1 ; Nyström, David Witt 1

1 DPMMS, University of Cambridge Cambridge UK
@article{PMIHES_2015__122__315_0,
     author = {Ross, Julius and Nystr\"om, David Witt},
     title = {Harmonic discs of solutions to the complex homogeneous {Monge-Amp\`ere} equation},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {315--335},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {122},
     year = {2015},
     doi = {10.1007/s10240-015-0074-0},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-015-0074-0/}
}
TY  - JOUR
AU  - Ross, Julius
AU  - Nyström, David Witt
TI  - Harmonic discs of solutions to the complex homogeneous Monge-Ampère equation
JO  - Publications Mathématiques de l'IHÉS
PY  - 2015
SP  - 315
EP  - 335
VL  - 122
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-015-0074-0/
DO  - 10.1007/s10240-015-0074-0
LA  - en
ID  - PMIHES_2015__122__315_0
ER  - 
%0 Journal Article
%A Ross, Julius
%A Nyström, David Witt
%T Harmonic discs of solutions to the complex homogeneous Monge-Ampère equation
%J Publications Mathématiques de l'IHÉS
%D 2015
%P 315-335
%V 122
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-015-0074-0/
%R 10.1007/s10240-015-0074-0
%G en
%F PMIHES_2015__122__315_0
Ross, Julius; Nyström, David Witt. Harmonic discs of solutions to the complex homogeneous Monge-Ampère equation. Publications Mathématiques de l'IHÉS, Tome 122 (2015), pp. 315-335. doi: 10.1007/s10240-015-0074-0

Cité par Sources :