Voir la notice de l'article provenant de la source Numdam
We study regularity properties of solutions to the Dirichlet problem for the complex Homogeneous Monge-Ampère equation. We show that for certain boundary data on P1 the solution Φ to this Dirichlet problem is connected via a Legendre transform to an associated flow in the complex plane called the Hele-Shaw flow. Using this we determine precisely the harmonic discs associated to Φ. We then give examples for which these discs are not dense in the product, and also prove that this situation persists after small perturbations of the boundary data.
Ross, Julius 1 ; Nyström, David Witt 1
@article{PMIHES_2015__122__315_0, author = {Ross, Julius and Nystr\"om, David Witt}, title = {Harmonic discs of solutions to the complex homogeneous {Monge-Amp\`ere} equation}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {315--335}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {122}, year = {2015}, doi = {10.1007/s10240-015-0074-0}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-015-0074-0/} }
TY - JOUR AU - Ross, Julius AU - Nyström, David Witt TI - Harmonic discs of solutions to the complex homogeneous Monge-Ampère equation JO - Publications Mathématiques de l'IHÉS PY - 2015 SP - 315 EP - 335 VL - 122 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-015-0074-0/ DO - 10.1007/s10240-015-0074-0 LA - en ID - PMIHES_2015__122__315_0 ER -
%0 Journal Article %A Ross, Julius %A Nyström, David Witt %T Harmonic discs of solutions to the complex homogeneous Monge-Ampère equation %J Publications Mathématiques de l'IHÉS %D 2015 %P 315-335 %V 122 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://geodesic.mathdoc.fr/articles/10.1007/s10240-015-0074-0/ %R 10.1007/s10240-015-0074-0 %G en %F PMIHES_2015__122__315_0
Ross, Julius; Nyström, David Witt. Harmonic discs of solutions to the complex homogeneous Monge-Ampère equation. Publications Mathématiques de l'IHÉS, Tome 122 (2015), pp. 315-335. doi: 10.1007/s10240-015-0074-0
Cité par Sources :