Voir la notice de l'article provenant de la source Numdam
We give a canonical synthetic construction of the mirror family to pairs (Y,D) where Y is a smooth projective surface and D is an anti-canonical cycle of rational curves. This mirror family is constructed as the spectrum of an explicit algebra structure on a vector space with canonical basis and multiplication rule defined in terms of counts of rational curves on Y meeting D in a single point. The elements of the canonical basis are called theta functions. Their construction depends crucially on the Gromov-Witten theory of the pair (Y,D).
Gross, Mark 1 ; Hacking, Paul 2 ; Keel, Sean 3
@article{PMIHES_2015__122__65_0, author = {Gross, Mark and Hacking, Paul and Keel, Sean}, title = {Mirror symmetry for log {Calabi-Yau} surfaces {I}}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {65--168}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {122}, year = {2015}, doi = {10.1007/s10240-015-0073-1}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-015-0073-1/} }
TY - JOUR AU - Gross, Mark AU - Hacking, Paul AU - Keel, Sean TI - Mirror symmetry for log Calabi-Yau surfaces I JO - Publications Mathématiques de l'IHÉS PY - 2015 SP - 65 EP - 168 VL - 122 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-015-0073-1/ DO - 10.1007/s10240-015-0073-1 LA - en ID - PMIHES_2015__122__65_0 ER -
%0 Journal Article %A Gross, Mark %A Hacking, Paul %A Keel, Sean %T Mirror symmetry for log Calabi-Yau surfaces I %J Publications Mathématiques de l'IHÉS %D 2015 %P 65-168 %V 122 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://geodesic.mathdoc.fr/articles/10.1007/s10240-015-0073-1/ %R 10.1007/s10240-015-0073-1 %G en %F PMIHES_2015__122__65_0
Gross, Mark; Hacking, Paul; Keel, Sean. Mirror symmetry for log Calabi-Yau surfaces I. Publications Mathématiques de l'IHÉS, Tome 122 (2015), pp. 65-168. doi: 10.1007/s10240-015-0073-1
Cité par Sources :