Rigidity of generic singularities of mean curvature flow
Publications Mathématiques de l'IHÉS, Tome 121 (2015), pp. 363-382

Voir la notice de l'article provenant de la source Numdam

Shrinkers are special solutions of mean curvature flow (MCF) that evolve by rescaling and model the singularities. While there are infinitely many in each dimension, Colding and Minicozzi II (Ann. Math. 175(2):755–833, 2012) showed that the only generic are round cylinders Sk×Rnk. We prove here that round cylinders are rigid in a very strong sense. Namely, any other shrinker that is sufficiently close to one of them on a large, but compact, set must itself be a round cylinder.

To our knowledge, this is the first general rigidity theorem for singularities of a nonlinear geometric flow. We expect that the techniques and ideas developed here have applications to other flows.

Our results hold in all dimensions and do not require any a priori smoothness.

DOI : 10.1007/s10240-015-0071-3
Keywords: Singular Point, Curvature Flow, Sectional Curvature, Generic Singularity, Tangent Cone

Colding, Tobias Holck 1 ; Ilmanen, Tom 2 ; Minicozzi, William P. II 1

1 Dept. of Math., MIT 77 Massachusetts Avenue 02139-4307 Cambridge MA USA
2 Departement Mathematik, ETH Zentrum 8092 Zürich Switzerland
@article{PMIHES_2015__121__363_0,
     author = {Colding, Tobias Holck and Ilmanen, Tom and Minicozzi, William P. II},
     title = {Rigidity of generic singularities of mean curvature flow},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {363--382},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {121},
     year = {2015},
     doi = {10.1007/s10240-015-0071-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-015-0071-3/}
}
TY  - JOUR
AU  - Colding, Tobias Holck
AU  - Ilmanen, Tom
AU  - Minicozzi, William P. II
TI  - Rigidity of generic singularities of mean curvature flow
JO  - Publications Mathématiques de l'IHÉS
PY  - 2015
SP  - 363
EP  - 382
VL  - 121
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-015-0071-3/
DO  - 10.1007/s10240-015-0071-3
LA  - en
ID  - PMIHES_2015__121__363_0
ER  - 
%0 Journal Article
%A Colding, Tobias Holck
%A Ilmanen, Tom
%A Minicozzi, William P. II
%T Rigidity of generic singularities of mean curvature flow
%J Publications Mathématiques de l'IHÉS
%D 2015
%P 363-382
%V 121
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-015-0071-3/
%R 10.1007/s10240-015-0071-3
%G en
%F PMIHES_2015__121__363_0
Colding, Tobias Holck; Ilmanen, Tom; Minicozzi, William P. II. Rigidity of generic singularities of mean curvature flow. Publications Mathématiques de l'IHÉS, Tome 121 (2015), pp. 363-382. doi: 10.1007/s10240-015-0071-3

Cité par Sources :