Constructing group actions on quasi-trees and applications to mapping class groups
Publications Mathématiques de l'IHÉS, Tome 122 (2015), pp. 1-64

Voir la notice de l'article provenant de la source Numdam

A quasi-tree is a geodesic metric space quasi-isometric to a tree. We give a general construction of many actions of groups on quasi-trees. The groups we can handle include non-elementary (relatively) hyperbolic groups, CAT(0) groups with rank 1 elements, mapping class groups and Out(Fn). As an application, we show that mapping class groups act on finite products of δ-hyperbolic spaces so that orbit maps are quasi-isometric embeddings. We prove that mapping class groups have finite asymptotic dimension.

DOI : 10.1007/s10240-014-0067-4
Keywords: Asymptotic Dimension, Cayley Graph, Mapping Class Group, Hyperbolic Group, Cayley Tree

Bestvina, Mladen 1 ; Bromberg, Ken 1 ; Fujiwara, Koji 2

1 Department of Mathematics, University of Utah 84112 Salt Lake City UT USA
2 Department of Mathematics, Kyoto University 606-8502 Kyoto Japan
@article{PMIHES_2015__122__1_0,
     author = {Bestvina, Mladen and Bromberg, Ken and Fujiwara, Koji},
     title = {Constructing group actions on quasi-trees and applications to mapping class groups},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--64},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {122},
     year = {2015},
     doi = {10.1007/s10240-014-0067-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-014-0067-4/}
}
TY  - JOUR
AU  - Bestvina, Mladen
AU  - Bromberg, Ken
AU  - Fujiwara, Koji
TI  - Constructing group actions on quasi-trees and applications to mapping class groups
JO  - Publications Mathématiques de l'IHÉS
PY  - 2015
SP  - 1
EP  - 64
VL  - 122
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-014-0067-4/
DO  - 10.1007/s10240-014-0067-4
LA  - en
ID  - PMIHES_2015__122__1_0
ER  - 
%0 Journal Article
%A Bestvina, Mladen
%A Bromberg, Ken
%A Fujiwara, Koji
%T Constructing group actions on quasi-trees and applications to mapping class groups
%J Publications Mathématiques de l'IHÉS
%D 2015
%P 1-64
%V 122
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-014-0067-4/
%R 10.1007/s10240-014-0067-4
%G en
%F PMIHES_2015__122__1_0
Bestvina, Mladen; Bromberg, Ken; Fujiwara, Koji. Constructing group actions on quasi-trees and applications to mapping class groups. Publications Mathématiques de l'IHÉS, Tome 122 (2015), pp. 1-64. doi: 10.1007/s10240-014-0067-4

Cité par Sources :