Quadratic differentials as stability conditions
Publications Mathématiques de l'IHÉS, Tome 121 (2015), pp. 155-278

Voir la notice de l'article provenant de la source Numdam

We prove that moduli spaces of meromorphic quadratic differentials with simple zeroes on compact Riemann surfaces can be identified with spaces of stability conditions on a class of CY3 triangulated categories defined using quivers with potential associated to triangulated surfaces. We relate the finite-length trajectories of such quadratic differentials to the stable objects of the corresponding stability condition.

DOI : 10.1007/s10240-014-0066-5
Keywords: Riemann Surface, Marked Point, Boundary Component, Quadratic Differential, Simple Object

Bridgeland, Tom 1 ; Smith, Ivan 2

1 School of Mathematics and Statistics, University of Sheffield Hicks Building S3 7RH Hounsfield Road England UK
2 Centre for Mathematical Sciences CB3 0WB Cambridge England UK
@article{PMIHES_2015__121__155_0,
     author = {Bridgeland, Tom and Smith, Ivan},
     title = {Quadratic differentials as stability conditions},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {155--278},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {121},
     year = {2015},
     doi = {10.1007/s10240-014-0066-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-014-0066-5/}
}
TY  - JOUR
AU  - Bridgeland, Tom
AU  - Smith, Ivan
TI  - Quadratic differentials as stability conditions
JO  - Publications Mathématiques de l'IHÉS
PY  - 2015
SP  - 155
EP  - 278
VL  - 121
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-014-0066-5/
DO  - 10.1007/s10240-014-0066-5
LA  - en
ID  - PMIHES_2015__121__155_0
ER  - 
%0 Journal Article
%A Bridgeland, Tom
%A Smith, Ivan
%T Quadratic differentials as stability conditions
%J Publications Mathématiques de l'IHÉS
%D 2015
%P 155-278
%V 121
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-014-0066-5/
%R 10.1007/s10240-014-0066-5
%G en
%F PMIHES_2015__121__155_0
Bridgeland, Tom; Smith, Ivan. Quadratic differentials as stability conditions. Publications Mathématiques de l'IHÉS, Tome 121 (2015), pp. 155-278. doi: 10.1007/s10240-014-0066-5

Cité par Sources :