Voir la notice de l'article provenant de la source Numdam
We prove that moduli spaces of meromorphic quadratic differentials with simple zeroes on compact Riemann surfaces can be identified with spaces of stability conditions on a class of CY3 triangulated categories defined using quivers with potential associated to triangulated surfaces. We relate the finite-length trajectories of such quadratic differentials to the stable objects of the corresponding stability condition.
Bridgeland, Tom 1 ; Smith, Ivan 2
@article{PMIHES_2015__121__155_0, author = {Bridgeland, Tom and Smith, Ivan}, title = {Quadratic differentials as stability conditions}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {155--278}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {121}, year = {2015}, doi = {10.1007/s10240-014-0066-5}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-014-0066-5/} }
TY - JOUR AU - Bridgeland, Tom AU - Smith, Ivan TI - Quadratic differentials as stability conditions JO - Publications Mathématiques de l'IHÉS PY - 2015 SP - 155 EP - 278 VL - 121 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-014-0066-5/ DO - 10.1007/s10240-014-0066-5 LA - en ID - PMIHES_2015__121__155_0 ER -
%0 Journal Article %A Bridgeland, Tom %A Smith, Ivan %T Quadratic differentials as stability conditions %J Publications Mathématiques de l'IHÉS %D 2015 %P 155-278 %V 121 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://geodesic.mathdoc.fr/articles/10.1007/s10240-014-0066-5/ %R 10.1007/s10240-014-0066-5 %G en %F PMIHES_2015__121__155_0
Bridgeland, Tom; Smith, Ivan. Quadratic differentials as stability conditions. Publications Mathématiques de l'IHÉS, Tome 121 (2015), pp. 155-278. doi: 10.1007/s10240-014-0066-5
Cité par Sources :