Partial regularity for optimal transport maps
Publications Mathématiques de l'IHÉS, Tome 121 (2015), pp. 81-112
Cet article a éte moissonné depuis la source Numdam
We prove that, for general cost functions on Rn, or for the cost d2/2 on a Riemannian manifold, optimal transport maps between smooth densities are always smooth outside a closed singular set of measure zero.
Keywords:
Riemannian Manifold, Partial Regularity, Optimal Transport, Optimal Transportation, Smooth Density
Affiliations des auteurs :
De Philippis, Guido 1 ; Figalli, Alessio 2
@article{PMIHES_2015__121__81_0,
author = {De Philippis, Guido and Figalli, Alessio},
title = {Partial regularity for optimal transport maps},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {81--112},
year = {2015},
publisher = {Springer Berlin Heidelberg},
address = {Berlin/Heidelberg},
volume = {121},
doi = {10.1007/s10240-014-0064-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-014-0064-7/}
}
TY - JOUR AU - De Philippis, Guido AU - Figalli, Alessio TI - Partial regularity for optimal transport maps JO - Publications Mathématiques de l'IHÉS PY - 2015 SP - 81 EP - 112 VL - 121 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-014-0064-7/ DO - 10.1007/s10240-014-0064-7 LA - en ID - PMIHES_2015__121__81_0 ER -
%0 Journal Article %A De Philippis, Guido %A Figalli, Alessio %T Partial regularity for optimal transport maps %J Publications Mathématiques de l'IHÉS %D 2015 %P 81-112 %V 121 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://geodesic.mathdoc.fr/articles/10.1007/s10240-014-0064-7/ %R 10.1007/s10240-014-0064-7 %G en %F PMIHES_2015__121__81_0
De Philippis, Guido; Figalli, Alessio. Partial regularity for optimal transport maps. Publications Mathématiques de l'IHÉS, Tome 121 (2015), pp. 81-112. doi: 10.1007/s10240-014-0064-7
Cité par Sources :
