Finite basis for analytic multiple gaps
Publications Mathématiques de l'IHÉS, Tome 121 (2015), pp. 57-79

Voir la notice de l'article provenant de la source Numdam

An n-gap consists of n many pairwise orthogonal families of subsets of a countable set that cannot be separated. We prove that for every positive integer n there is a finite basis for the class of analytic n-gaps. The proof requires an analysis of certain combinatorial problems on the n-adic tree, and in particular a new partition theorem for trees.

DOI : 10.1007/s10240-014-0063-8
Keywords: Winning Strategy, Finite Basis, Partition Theorem, Minimal Idempotent, Asymmetric Version

Avilés, Antonio 1 ; Todorcevic, Stevo 2, 3

1 Departamento de Matemáticas, Universidad de Murcia Campus de Espinardo 30100 Murcia Spain
2 Department of Mathematics, University of Toronto M5S 3G3 Toronto Canada
3 Institut de Mathématiques de Jussieu, CNRS UMR 7586 Case 247, 4 place Jussieu 75252 Paris Cedex France
@article{PMIHES_2015__121__57_0,
     author = {Avil\'es, Antonio and Todorcevic, Stevo},
     title = {Finite basis for analytic multiple gaps},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {57--79},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {121},
     year = {2015},
     doi = {10.1007/s10240-014-0063-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-014-0063-8/}
}
TY  - JOUR
AU  - Avilés, Antonio
AU  - Todorcevic, Stevo
TI  - Finite basis for analytic multiple gaps
JO  - Publications Mathématiques de l'IHÉS
PY  - 2015
SP  - 57
EP  - 79
VL  - 121
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-014-0063-8/
DO  - 10.1007/s10240-014-0063-8
LA  - en
ID  - PMIHES_2015__121__57_0
ER  - 
%0 Journal Article
%A Avilés, Antonio
%A Todorcevic, Stevo
%T Finite basis for analytic multiple gaps
%J Publications Mathématiques de l'IHÉS
%D 2015
%P 57-79
%V 121
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-014-0063-8/
%R 10.1007/s10240-014-0063-8
%G en
%F PMIHES_2015__121__57_0
Avilés, Antonio; Todorcevic, Stevo. Finite basis for analytic multiple gaps. Publications Mathématiques de l'IHÉS, Tome 121 (2015), pp. 57-79. doi: 10.1007/s10240-014-0063-8

Cité par Sources :