Voir la notice de l'article provenant de la source Numdam
An n-gap consists of n many pairwise orthogonal families of subsets of a countable set that cannot be separated. We prove that for every positive integer n there is a finite basis for the class of analytic n-gaps. The proof requires an analysis of certain combinatorial problems on the n-adic tree, and in particular a new partition theorem for trees.
Avilés, Antonio 1 ; Todorcevic, Stevo 2, 3
@article{PMIHES_2015__121__57_0, author = {Avil\'es, Antonio and Todorcevic, Stevo}, title = {Finite basis for analytic multiple gaps}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {57--79}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {121}, year = {2015}, doi = {10.1007/s10240-014-0063-8}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-014-0063-8/} }
TY - JOUR AU - Avilés, Antonio AU - Todorcevic, Stevo TI - Finite basis for analytic multiple gaps JO - Publications Mathématiques de l'IHÉS PY - 2015 SP - 57 EP - 79 VL - 121 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-014-0063-8/ DO - 10.1007/s10240-014-0063-8 LA - en ID - PMIHES_2015__121__57_0 ER -
%0 Journal Article %A Avilés, Antonio %A Todorcevic, Stevo %T Finite basis for analytic multiple gaps %J Publications Mathématiques de l'IHÉS %D 2015 %P 57-79 %V 121 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://geodesic.mathdoc.fr/articles/10.1007/s10240-014-0063-8/ %R 10.1007/s10240-014-0063-8 %G en %F PMIHES_2015__121__57_0
Avilés, Antonio; Todorcevic, Stevo. Finite basis for analytic multiple gaps. Publications Mathématiques de l'IHÉS, Tome 121 (2015), pp. 57-79. doi: 10.1007/s10240-014-0063-8
Cité par Sources :