A category of kernels for equivariant factorizations and its implications for Hodge theory
Publications Mathématiques de l'IHÉS, Tome 120 (2014), pp. 1-111

Voir la notice de l'article provenant de la source Numdam

We provide a factorization model for the continuous internal Hom, in the homotopy category of k-linear dg-categories, between dg-categories of equivariant factorizations. This motivates a notion, similar to that of Kuznetsov, which we call the extended Hochschild cohomology algebra of the category of equivariant factorizations. In some cases of geometric interest, extended Hochschild cohomology contains Hochschild cohomology as a subalgebra and Hochschild homology as a homogeneous component. We use our factorization model for the internal Hom to calculate the extended Hochschild cohomology for equivariant factorizations on affine space.

Combining the computation of extended Hochschild cohomology with the Hochschild-Kostant-Rosenberg isomorphism and a theorem of Orlov recovers and extends Griffiths’ classical description of the primitive cohomology of a smooth, complex projective hypersurface in terms of homogeneous pieces of the Jacobian algebra. In the process, the primitive cohomology is identified with the fixed subspace of the cohomological endomorphism associated to an interesting endofunctor of the bounded derived category of coherent sheaves on the hypersurface. We also demonstrate how to understand the whole Jacobian algebra as morphisms between kernels of endofunctors of the derived category.

Finally, we present a bootstrap method for producing algebraic cycles in categories of equivariant factorizations. As proof of concept, we show how this reproves the Hodge conjecture for all self-products of a particular K3 surface closely related to the Fermat cubic fourfold.

DOI : 10.1007/s10240-013-0059-9
Keywords: Algebraic Group, equivariant factorization, Triangulate Category, Homotopy Category, Hochschild Cohomology

Ballard, Matthew 1, 2 ; Favero, David 2 ; Katzarkov, Ludmil 3

1 Department of Mathematics, University of Wisconsin-Madison Madison WI USA
2 Fakultät für Mathematik, Universität von Wien Viena Austria
3 Department of Mathematics, University of Miami Coral Gables FL USA
@article{PMIHES_2014__120__1_0,
     author = {Ballard, Matthew and Favero, David and Katzarkov, Ludmil},
     title = {A category of kernels for equivariant factorizations and its implications for {Hodge} theory},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--111},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {120},
     year = {2014},
     doi = {10.1007/s10240-013-0059-9},
     mrnumber = {3270588},
     zbl = {1401.14086},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-013-0059-9/}
}
TY  - JOUR
AU  - Ballard, Matthew
AU  - Favero, David
AU  - Katzarkov, Ludmil
TI  - A category of kernels for equivariant factorizations and its implications for Hodge theory
JO  - Publications Mathématiques de l'IHÉS
PY  - 2014
SP  - 1
EP  - 111
VL  - 120
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-013-0059-9/
DO  - 10.1007/s10240-013-0059-9
LA  - en
ID  - PMIHES_2014__120__1_0
ER  - 
%0 Journal Article
%A Ballard, Matthew
%A Favero, David
%A Katzarkov, Ludmil
%T A category of kernels for equivariant factorizations and its implications for Hodge theory
%J Publications Mathématiques de l'IHÉS
%D 2014
%P 1-111
%V 120
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-013-0059-9/
%R 10.1007/s10240-013-0059-9
%G en
%F PMIHES_2014__120__1_0
Ballard, Matthew; Favero, David; Katzarkov, Ludmil. A category of kernels for equivariant factorizations and its implications for Hodge theory. Publications Mathématiques de l'IHÉS, Tome 120 (2014), pp. 1-111. doi: 10.1007/s10240-013-0059-9

Cité par Sources :