Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence
Publications Mathématiques de l'IHÉS, Tome 119 (2014), pp. 127-216

Voir la notice de l'article provenant de la source Numdam

We show that the Gromov-Witten theory of Calabi-Yau hypersurfaces matches, in genus zero and after an analytic continuation, the quantum singularity theory (FJRW theory) recently introduced by Fan, Jarvis and Ruan following a proposal of Witten. Moreover, on both sides, we highlight two remarkable integral local systems arising from the common formalism of Γ ^-integral structures applied to the derived category of the hypersurface {W=0} and to the category of graded matrix factorizations of W. In this setup, we prove that the analytic continuation matches Orlov equivalence between the two above categories.

DOI : 10.1007/s10240-013-0056-z
Keywords: Integral Structure, Chern Character, Quantum Cohomology, Twisted Theory, Frobenius Manifold

Chiodo, Alessandro 1 ; Iritani, Hiroshi 2 ; Ruan, Yongbin 3

1 Institut de Mathématiques de Jussieu, UMR 7586 CNRS, Université Pierre et Marie Curie Case 247, 4 Place Jussieu 75252 Paris cedex 05 France
2 Department of Mathematics, Graduate School of Science, Kyoto University Kitashirakawa-Oiwake-cho, Sakyo-ku 606-8502 Kyoto Japan
3 Department of Mathematics, University of Michigan 48109-1109 Ann Arbor MI USA
@article{PMIHES_2014__119__127_0,
     author = {Chiodo, Alessandro and Iritani, Hiroshi and Ruan, Yongbin},
     title = {Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and {Orlov} equivalence},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {127--216},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {119},
     year = {2014},
     doi = {10.1007/s10240-013-0056-z},
     mrnumber = {3210178},
     zbl = {1298.14042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-013-0056-z/}
}
TY  - JOUR
AU  - Chiodo, Alessandro
AU  - Iritani, Hiroshi
AU  - Ruan, Yongbin
TI  - Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence
JO  - Publications Mathématiques de l'IHÉS
PY  - 2014
SP  - 127
EP  - 216
VL  - 119
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-013-0056-z/
DO  - 10.1007/s10240-013-0056-z
LA  - en
ID  - PMIHES_2014__119__127_0
ER  - 
%0 Journal Article
%A Chiodo, Alessandro
%A Iritani, Hiroshi
%A Ruan, Yongbin
%T Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence
%J Publications Mathématiques de l'IHÉS
%D 2014
%P 127-216
%V 119
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-013-0056-z/
%R 10.1007/s10240-013-0056-z
%G en
%F PMIHES_2014__119__127_0
Chiodo, Alessandro; Iritani, Hiroshi; Ruan, Yongbin. Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence. Publications Mathématiques de l'IHÉS, Tome 119 (2014), pp. 127-216. doi: 10.1007/s10240-013-0056-z

Cité par Sources :