- and -theory of group rings over
Publications Mathématiques de l'IHÉS, Tome 119 (2014), pp. 97-125
Voir la notice de l'article provenant de la source Numdam
We prove the - and -theoretic Farrell-Jones Conjecture (with coefficients in additive categories) for
Keywords:
Abelian Group, Volume Function, Group Ring, Cyclic Subgroup, Wreath Product
Affiliations des auteurs :
Bartels, Arthur 1 ; Lück, Wolfgang 2 ; Reich, Holger 3 ; Rüping, Henrik 2
@article{PMIHES_2014__119__97_0,
author = {Bartels, Arthur and L\"uck, Wolfgang and Reich, Holger and R\"uping, Henrik},
title = {$K$- and \protect\emph{$L$}-theory of group rings over $GL_n ( \mathbf{Z} )$},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {97--125},
publisher = {Springer Berlin Heidelberg},
address = {Berlin/Heidelberg},
volume = {119},
year = {2014},
doi = {10.1007/s10240-013-0055-0},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-013-0055-0/}
}
TY - JOUR
AU - Bartels, Arthur
AU - Lück, Wolfgang
AU - Reich, Holger
AU - Rüping, Henrik
TI - $K$- and $L$-theory of group rings over $GL_n ( \mathbf{Z} )$
JO - Publications Mathématiques de l'IHÉS
PY - 2014
SP - 97
EP - 125
VL - 119
PB - Springer Berlin Heidelberg
PP - Berlin/Heidelberg
UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-013-0055-0/
DO - 10.1007/s10240-013-0055-0
LA - en
ID - PMIHES_2014__119__97_0
ER -
%0 Journal Article
%A Bartels, Arthur
%A Lück, Wolfgang
%A Reich, Holger
%A Rüping, Henrik
%T $K$- and $L$-theory of group rings over $GL_n ( \mathbf{Z} )$
%J Publications Mathématiques de l'IHÉS
%D 2014
%P 97-125
%V 119
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-013-0055-0/
%R 10.1007/s10240-013-0055-0
%G en
%F PMIHES_2014__119__97_0
Bartels, Arthur; Lück, Wolfgang; Reich, Holger; Rüping, Henrik. $K$- and $L$-theory of group rings over $GL_n ( \mathbf{Z} )$. Publications Mathématiques de l'IHÉS, Tome 119 (2014), pp. 97-125. doi: 10.1007/s10240-013-0055-0
Cité par Sources :