Virtually free pro-p groups
Publications Mathématiques de l'IHÉS, Tome 118 (2013), pp. 193-211
Voir la notice de l'article provenant de la source Numdam
We prove that in the category of pro-p groups any finitely generated group G with a free open subgroup splits either as an amalgamated free product or as an HNN-extension over a finite p-group. From this result we deduce that such a pro-p group is the pro-p completion of a fundamental group of a finite graph of finite p-groups.
DOI :
10.1007/s10240-013-0051-4
Affiliations des auteurs :
Herfort, Wolfgang 1 ; Zalesskii, Pavel 2
@article{PMIHES_2013__118__193_0,
author = {Herfort, Wolfgang and Zalesskii, Pavel},
title = {Virtually free pro-\protect\emph{p} groups},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {193--211},
publisher = {Springer Berlin Heidelberg},
address = {Berlin/Heidelberg},
volume = {118},
year = {2013},
doi = {10.1007/s10240-013-0051-4},
mrnumber = {3150249},
zbl = {1288.20037},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-013-0051-4/}
}
TY - JOUR AU - Herfort, Wolfgang AU - Zalesskii, Pavel TI - Virtually free pro-p groups JO - Publications Mathématiques de l'IHÉS PY - 2013 SP - 193 EP - 211 VL - 118 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-013-0051-4/ DO - 10.1007/s10240-013-0051-4 LA - en ID - PMIHES_2013__118__193_0 ER -
%0 Journal Article %A Herfort, Wolfgang %A Zalesskii, Pavel %T Virtually free pro-p groups %J Publications Mathématiques de l'IHÉS %D 2013 %P 193-211 %V 118 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://geodesic.mathdoc.fr/articles/10.1007/s10240-013-0051-4/ %R 10.1007/s10240-013-0051-4 %G en %F PMIHES_2013__118__193_0
Herfort, Wolfgang; Zalesskii, Pavel. Virtually free pro-p groups. Publications Mathématiques de l'IHÉS, Tome 118 (2013), pp. 193-211. doi: 10.1007/s10240-013-0051-4
Cité par Sources :
