Existence of log canonical flips and a special LMMP
Publications Mathématiques de l'IHÉS, Tome 115 (2012), pp. 325-368

Voir la notice de l'article provenant de la source Numdam

Let (X/Z,B+A) be a Q-factorial dlt pair where B,A≥0 are Q-divisors and K X +B+A Q 0/Z. We prove that any LMMP/Z on K X +B with scaling of an ample/Z divisor terminates with a good log minimal model or a Mori fibre space. We show that a more general statement follows from the ACC for lc thresholds. An immediate corollary of these results is that log flips exist for log canonical pairs.

DOI : 10.1007/s10240-012-0039-5

Birkar, Caucher 1

1 DPMMS, Centre for Mathematical Sciences, Cambridge University Wilberforce Road, Cambridge, CB3 0WB UK
@article{PMIHES_2012__115__325_0,
     author = {Birkar, Caucher},
     title = {Existence of log canonical flips and a special {LMMP}},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {325--368},
     publisher = {Springer-Verlag},
     volume = {115},
     year = {2012},
     doi = {10.1007/s10240-012-0039-5},
     zbl = {1256.14012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-012-0039-5/}
}
TY  - JOUR
AU  - Birkar, Caucher
TI  - Existence of log canonical flips and a special LMMP
JO  - Publications Mathématiques de l'IHÉS
PY  - 2012
SP  - 325
EP  - 368
VL  - 115
PB  - Springer-Verlag
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-012-0039-5/
DO  - 10.1007/s10240-012-0039-5
LA  - en
ID  - PMIHES_2012__115__325_0
ER  - 
%0 Journal Article
%A Birkar, Caucher
%T Existence of log canonical flips and a special LMMP
%J Publications Mathématiques de l'IHÉS
%D 2012
%P 325-368
%V 115
%I Springer-Verlag
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-012-0039-5/
%R 10.1007/s10240-012-0039-5
%G en
%F PMIHES_2012__115__325_0
Birkar, Caucher. Existence of log canonical flips and a special LMMP. Publications Mathématiques de l'IHÉS, Tome 115 (2012), pp. 325-368. doi: 10.1007/s10240-012-0039-5

Cité par Sources :