Voir la notice de l'article provenant de la source Numdam
Under suitable hypotheses, we prove that a form of a projective homogeneous variety G/P defined over the function field of a surface over an algebraically closed field has a rational point. The method uses an algebro-geometric analogue of simple connectedness replacing the unit interval by the projective line. As a consequence, we complete the proof of Serre’s Conjecture II in Galois cohomology for function fields over an algebraically closed field.
Jong, A. J. 1 ; He, Xuhua 2 ; Starr, Jason Michael 3
@article{PMIHES_2011__114__1_0, author = {Jong, A. J. and He, Xuhua and Starr, Jason Michael}, title = {Families of rationally simply connected varieties over surfaces and torsors for semisimple groups}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {1--85}, publisher = {Springer-Verlag}, volume = {114}, year = {2011}, doi = {10.1007/s10240-011-0035-1}, zbl = {1285.14053}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-011-0035-1/} }
TY - JOUR AU - Jong, A. J. AU - He, Xuhua AU - Starr, Jason Michael TI - Families of rationally simply connected varieties over surfaces and torsors for semisimple groups JO - Publications Mathématiques de l'IHÉS PY - 2011 SP - 1 EP - 85 VL - 114 PB - Springer-Verlag UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-011-0035-1/ DO - 10.1007/s10240-011-0035-1 LA - en ID - PMIHES_2011__114__1_0 ER -
%0 Journal Article %A Jong, A. J. %A He, Xuhua %A Starr, Jason Michael %T Families of rationally simply connected varieties over surfaces and torsors for semisimple groups %J Publications Mathématiques de l'IHÉS %D 2011 %P 1-85 %V 114 %I Springer-Verlag %U http://geodesic.mathdoc.fr/articles/10.1007/s10240-011-0035-1/ %R 10.1007/s10240-011-0035-1 %G en %F PMIHES_2011__114__1_0
Jong, A. J.; He, Xuhua; Starr, Jason Michael. Families of rationally simply connected varieties over surfaces and torsors for semisimple groups. Publications Mathématiques de l'IHÉS, Tome 114 (2011), pp. 1-85. doi: 10.1007/s10240-011-0035-1
Cité par Sources :