Khovanov homology is an unknot-detector
Publications Mathématiques de l'IHÉS, Tome 113 (2011), pp. 97-208

Voir la notice de l'article provenant de la source Numdam

We prove that a knot is the unknot if and only if its reduced Khovanov cohomology has rank 1. The proof has two steps. We show first that there is a spectral sequence beginning with the reduced Khovanov cohomology and abutting to a knot homology defined using singular instantons. We then show that the latter homology is isomorphic to the instanton Floer homology of the sutured knot complement: an invariant that is already known to detect the unknot.

DOI : 10.1007/s10240-010-0030-y

Kronheimer, P. B. 1 ; Mrowka, T. S. 2

1 Harvard University Cambridge, MA, 02138 USA
2 Massachusetts Institute of Technology Cambridge, MA, 02139 USA
@article{PMIHES_2011__113__97_0,
     author = {Kronheimer, P. B. and Mrowka, T. S.},
     title = {Khovanov homology is an unknot-detector},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {97--208},
     publisher = {Springer-Verlag},
     volume = {113},
     year = {2011},
     doi = {10.1007/s10240-010-0030-y},
     mrnumber = {2805599},
     zbl = {1241.57017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-010-0030-y/}
}
TY  - JOUR
AU  - Kronheimer, P. B.
AU  - Mrowka, T. S.
TI  - Khovanov homology is an unknot-detector
JO  - Publications Mathématiques de l'IHÉS
PY  - 2011
SP  - 97
EP  - 208
VL  - 113
PB  - Springer-Verlag
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-010-0030-y/
DO  - 10.1007/s10240-010-0030-y
LA  - en
ID  - PMIHES_2011__113__97_0
ER  - 
%0 Journal Article
%A Kronheimer, P. B.
%A Mrowka, T. S.
%T Khovanov homology is an unknot-detector
%J Publications Mathématiques de l'IHÉS
%D 2011
%P 97-208
%V 113
%I Springer-Verlag
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-010-0030-y/
%R 10.1007/s10240-010-0030-y
%G en
%F PMIHES_2011__113__97_0
Kronheimer, P. B.; Mrowka, T. S. Khovanov homology is an unknot-detector. Publications Mathématiques de l'IHÉS, Tome 113 (2011), pp. 97-208. doi: 10.1007/s10240-010-0030-y

Cité par Sources :