The subconvexity problem for GL2
Publications Mathématiques de l'IHÉS, Tome 111 (2010), pp. 171-271

Voir la notice de l'article provenant de la source Numdam

Generalizing and unifying prior results, we solve the subconvexity problem for the L-functions of GL 1 and GL 2 automorphic representations over a fixed number field, uniformly in all aspects. A novel feature of the present method is the softness of our arguments; this is largely due to a consistent use of canonically normalized period relations, such as those supplied by the work of Waldspurger and Ichino–Ikeda.

@article{PMIHES_2010__111__171_0,
     author = {Michel, Philippe and Venkatesh, Akshay},
     title = {The subconvexity problem for {GL2}},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {171--271},
     publisher = {Springer-Verlag},
     volume = {111},
     year = {2010},
     doi = {10.1007/s10240-010-0025-8},
     mrnumber = {2653249},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-010-0025-8/}
}
TY  - JOUR
AU  - Michel, Philippe
AU  - Venkatesh, Akshay
TI  - The subconvexity problem for GL2
JO  - Publications Mathématiques de l'IHÉS
PY  - 2010
SP  - 171
EP  - 271
VL  - 111
PB  - Springer-Verlag
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-010-0025-8/
DO  - 10.1007/s10240-010-0025-8
LA  - en
ID  - PMIHES_2010__111__171_0
ER  - 
%0 Journal Article
%A Michel, Philippe
%A Venkatesh, Akshay
%T The subconvexity problem for GL2
%J Publications Mathématiques de l'IHÉS
%D 2010
%P 171-271
%V 111
%I Springer-Verlag
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-010-0025-8/
%R 10.1007/s10240-010-0025-8
%G en
%F PMIHES_2010__111__171_0
Michel, Philippe; Venkatesh, Akshay. The subconvexity problem for GL2. Publications Mathématiques de l'IHÉS, Tome 111 (2010), pp. 171-271. doi: 10.1007/s10240-010-0025-8

Cité par Sources :