The subconvexity problem for GL2
Publications Mathématiques de l'IHÉS, Tome 111 (2010), pp. 171-271.

Voir la notice de l'article provenant de la source Numdam

Generalizing and unifying prior results, we solve the subconvexity problem for the L-functions of GL 1 and GL 2 automorphic representations over a fixed number field, uniformly in all aspects. A novel feature of the present method is the softness of our arguments; this is largely due to a consistent use of canonically normalized period relations, such as those supplied by the work of Waldspurger and Ichino–Ikeda.

@article{PMIHES_2010__111__171_0,
     author = {Michel, Philippe and Venkatesh, Akshay},
     title = {The subconvexity problem for {GL2}},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {171--271},
     publisher = {Springer-Verlag},
     volume = {111},
     year = {2010},
     doi = {10.1007/s10240-010-0025-8},
     mrnumber = {2653249},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-010-0025-8/}
}
TY  - JOUR
AU  - Michel, Philippe
AU  - Venkatesh, Akshay
TI  - The subconvexity problem for GL2
JO  - Publications Mathématiques de l'IHÉS
PY  - 2010
SP  - 171
EP  - 271
VL  - 111
PB  - Springer-Verlag
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-010-0025-8/
DO  - 10.1007/s10240-010-0025-8
LA  - en
ID  - PMIHES_2010__111__171_0
ER  - 
%0 Journal Article
%A Michel, Philippe
%A Venkatesh, Akshay
%T The subconvexity problem for GL2
%J Publications Mathématiques de l'IHÉS
%D 2010
%P 171-271
%V 111
%I Springer-Verlag
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-010-0025-8/
%R 10.1007/s10240-010-0025-8
%G en
%F PMIHES_2010__111__171_0
Michel, Philippe; Venkatesh, Akshay. The subconvexity problem for GL2. Publications Mathématiques de l'IHÉS, Tome 111 (2010), pp. 171-271. doi : 10.1007/s10240-010-0025-8. http://geodesic.mathdoc.fr/articles/10.1007/s10240-010-0025-8/

1. J. Arthur, Eisenstein series and the trace formula, in: Automorphic Forms, Representations and L-functions, Part 1, (1979), Am. Math. Soc., Providence | Zbl | MR

2. J. Arthur, A trace formula for reductive groups. II. Applications of a truncation operator, Compos. Math. 40 (1980), p. 87-121 | Zbl | MR | mathdoc-id

3. I. N. Bernšteĭn, All reductive 𝔭-adic groups are of type I, Funkc. Anal. Prilozh. 8 (1974), p. 3-6 | Zbl | MR

4. J. Bernstein, A. Reznikov, Sobolev norms of automorphic functionals, Int. Math. Res. Not. 40 (2002), p. 2155-2174 | Zbl | MR

5. J. Bernstein and A. Reznikov , Subconvexity bounds for triple L-functions and representation theory, arXiv: math/0608555v1 , 2006. | Zbl | MR

6. V. Blomer, Rankin-Selberg L-functions on the critical line, Manusc. Math. 117 (2005), p. 111-133 | Zbl | MR

7. V. Blomer, G. Harcos, The spectral decomposition of shifted convolution sums, Duke Math. J. 144 (2008), p. 321-339 | Zbl | MR

8. V. Blomer, G. Harcos, Hybrid bounds for twisted L-functions, J. Reine Angew. Math. 621 (2008), p. 53-79 | Zbl | MR

9. V. Blomer, G. Harcos, Ph. Michel, Bounds for modular L-functions in the level aspect, Ann. Sci. École Norm. Supér. (4) 40 (2007), p. 697-740 | Zbl | MR

10. C. J. Bushnell, G. Henniart, An upper bound on conductors for pairs, J. Number Theory 65 (1997), p. 183-196 | Zbl | MR

11. N. Burq, P. Gérard, N. Tzvetkov, Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds, Duke Math. J. 138 (2007), p. 445-486 | Zbl | MR

12. D. A. Burgess, On character sums and L-series. II, Proc. Lond. Math. Soc. (3) 13 (1963), p. 524-536 | Zbl | MR

13. M. Cowling, U. Haagerup, R. Howe, Almost L 2 matrix coefficients, J. Reine Angew. Math. 387 (1988), p. 97-110 | Zbl | MR

14. L. Clozel, Démonstration de la conjecture τ , Invent. Math. 151 (2003), p. 297-328 | Zbl | MR

15. L. Clozel, E. Ullmo, Équidistribution de mesures algébriques, Compos. Math. 141 (2005), p. 1255-1309 | Zbl | MR

16. A. Diaconu and P. Garrett, Subconvexity bounds for automorphic L-functions for GL(2) over number fields, preprint (2008). | Zbl | MR

17. W. Duke, J. Friedlander, H. Iwaniec, Bounds for automorphic L-functions, Invent. Math. 112 (1993), p. 1-8 | Zbl | MR

18. W. Duke, J. Friedlander, H. Iwaniec, Bounds for automorphic L-functions. II, Invent. Math. 115 (1994), p. 219-239 | Zbl | MR

19. W. Duke, J. B. Friedlander, H. Iwaniec, The subconvexity problem for Artin L-functions, Invent. Math. 149 (2002), p. 489-577 | Zbl | MR

20. M. Einsiedler, E. Lindenstrauss, Ph. Michel, and A. Venkatesh, The distribution of periodic torus orbits on homogeneous spaces: Duke’s theorem for cubic fields, Ann. Math., to appear (2007), arXiv: 0903.3591 . | Zbl | MR

21. M. Einsiedler, E. Lindenstrauss, Ph. Michel, A. Venkatesh, Distribution of periodic torus orbits on homogeneous spaces I, Duke Math. J. 148 (2009), p. 119-174 | Zbl | MR

22. É. Fouvry, H. Iwaniec, A subconvexity bound for Hecke L-functions, Ann. Sci. École Norm. Supér. (4) 34 (2001), p. 669-683 | Zbl | MR | mathdoc-id

23. J. Friedlander, H. Iwaniec, A mean-value theorem for character sums, Mich. Math. J. 39 (1992), p. 153-159 | Zbl | MR

24. J. Hoffstein, P. Lockhart, Coefficients of Maass forms and the Siegel zero, with an appendix by Dorian Goldfeld, Hoffstein and Daniel Lieman, Ann. Math. (2) 140 (1994), p. 161-181 | Zbl | MR

25. S. Gelbart, H. Jacquet, A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. École Norm. Supér. (4) 11 (1978), p. 471-542 | Zbl | MR | mathdoc-id

26. S. Gelbart, H. Jacquet, Forms of GL(2) from the analytic point of view, in: Automorphic forms, representations and L-functions, Part 1, (1979), Am. Math. Soc., Providence | Zbl | MR

27. A. Good, The square mean of Dirichlet series associated with cusp forms, Mathematika 29 (1982), p. 278-295 | Zbl | MR

28. A. Gorodnik, F. Maucourant, H. Oh, Manin’s and Peyre’s conjectures on rational points and adelic mixing, Ann. Sci. École Norm. Supér. (4) 41 (2008), p. 383-435 | Zbl | MR | mathdoc-id

29. D. R. Heath-Brown, Hybrid bounds for Dirichlet L-functions, Invent. Math. 47 (1978), p. 149-170 | Zbl | MR

30. D. R. Heath-Brown, Convexity bounds for L-function, preprint (2008), arXiv: 0809.1752 . | Zbl | MR

31. G. Harcos, Ph. Michel, The subconvexity problem for Rankin-Selberg L-functions and equidistribution of Heegner points. II, Invent. Math. 163 (2006), p. 581-655 | Zbl | MR

32. A. Ichino, Trilinear forms and the central values of triple product L-functions, Duke Math. J. 145 (2008), p. 281-307 | Zbl | MR

33. A. Ichino, T. Ikeda, On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture, Geom. Funct. Anal. 19 (2010), p. 1378-1425 | Zbl | MR

34. A. Ivić, On sums of Hecke series in short intervals, J. Théor. Nr. Bordx. 13 (2001), p. 453-468 | Zbl | MR | mathdoc-id

35. H. Iwaniec, The spectral growth of automorphic L-functions, J. Reine Angew. Math. 428 (1992), p. 139-159 | Zbl | MR

36. H. Iwaniec, Harmonic analysis in number theory, in: Prospects in Mathematics, (1999), Am. Math. Soc., Providence | Zbl | MR

37. H. Iwaniec and P. Sarnak, Perspectives on the analytic theory of L-functions, GAFA 2000 (Tel Aviv, 1999), Geom. Funct. Anal. (2000), Special Volume, pp. 705–741. | Zbl | MR

38. H. Jacquet, R. P. Langlands, Automorphic Forms on GL(2), Lecture Notes in Mathematics 114 (1970), Springer, Berlin | Zbl | MR

39. H. Jacquet, I. I. Piatetski-Shapiro, J. Shalika, Conducteur des représentations du groupe linéaire, Math. Ann. 256 (1981), p. 199-214 | Zbl | MR

40. M. Jutila, The twelfth moment of central values of Hecke series, J. Number Theory 108 (2004), p. 157-168 | Zbl | MR

41. M. Jutila, Y. Motohashi, Uniform bound for Hecke L-functions, Acta Math. 195 (2005), p. 61-115 | Zbl | MR

42. H. Kim, Functoriality for the exterior square of GL4 and the symmetric fourth of GL2, with appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak, J. Am. Math. Soc. 16 (2003), p. 139-183 | Zbl | MR

43. E. Kowalski, Ph. Michel, J. Vanderkam, Rankin-Selberg L-functions in the level aspect, Duke Math. J. 114 (2002), p. 123-191 | Zbl | MR

44. N. V. Kuznetsov, Sums of Kloosterman sums and the eighth power moment of the Riemann zeta-function, in: Number Theory and Related Topics, Tata Inst. Fund. Res. Stud. Math. 12 (1989), Tata Inst. Fund. Res., Bombay | Zbl | MR

45. J. Liu, Y. Ye, Subconvexity for Rankin-Selberg L-functions of Maass forms, Geom. Funct. Anal. 12 (2002), p. 1296-1323 | Zbl | MR

46. H. Y. Loke, Trilinear forms of 𝔤𝔩 2 , Pac. J. Math. 197 (2001), p. 119-144 | Zbl | MR

47. W. Luo, Z. Rudnick, P. Sarnak, On the generalized Ramanujan conjecture for GL(n), in: Automorphic Forms, Automorphic Representations, and Arithmetic, Proc. Sympos. Pure Math. 66 (1999), Am. Math. Soc., Providence | Zbl | MR

48. T. Meurman, On the order of the Maass L-function on the critical line, in: Number Theory, Vol. I, Colloq. Math. Soc. János Bolyai 51 (1990), North-Holland, Amsterdam | Zbl | MR

49. Ph. Michel, The subconvexity problem for Rankin-Selberg L-functions and equidistribution of Heegner points, Ann. Math. (2) 160 (2004), p. 185-236 | Zbl | MR

50. Ph. Michel, Analytic number theory and families of automorphic L-functions, in: Automorphic Forms and Applications, IAS/Park City Math. Ser. 12 (2007), Am. Math. Soc., Providence | Zbl | MR

51. Ph. Michel, A. Venkatesh, Equidistribution, L-functions and ergodic theory: on some problems of Yu. Linnik, in: International Congress of Mathematicians, vol. II, (2006), Eur. Math. Soc., Zürich | Zbl | MR

52. C. Moeglin, J.-L. Waldspurger, Spectral Decomposition and Eisenstein Series, Cambridge Tracts in Mathematics 113 (1995), Cambridge University Press, Cambridge | Zbl | MR

53. Y. Motohashi, Spectral Theory of the Riemann Zeta-Function, Cambridge Tracts in Mathematics 127 (1997), Cambridge University Press, Cambridge | Zbl | MR

54. Y. Motohashi, A functional equation for the spectral fourth moment of modular Hecke L-functions, in Proceedings of the Session in Analytic Number Theory and Diophantine Equations, Bonner Math. Schriften, vol. 360, p. 19, 2003. | Zbl | MR

55. W. Müller, The trace class conjecture in the theory of automorphic forms II, Geom. Funct. Anal. 8 (1998), p. 315-355 | Zbl | MR

56. H. Oh, Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Math. J. 113 (2002), p. 133-192 | Zbl | MR

57. A. I. Oksak, Trilinear Lorentz invariant forms, Commun. Math. Phys. 29 (1973), p. 189-217 | MR

58. D. Prasad, Trilinear forms for representations of GL(2) and local ε-factors, Compos. Math. 75 (1990), p. 1-46 | Zbl | MR | mathdoc-id

59. A. Reznikov, Norms of geodesic restrictions for eigenfunctions on hyperbolic surfaces and representation theory, preprint, 2004, arXiv: math/0403437v2 .

60. A. Reznikov, Rankin-Selberg without unfolding and bounds for spherical Fourier coefficients of Maass forms, J. Am. Math. Soc. 21 (2008), p. 439-477 | Zbl | MR

61. Y. Sakellaridis and A. Venkatesh, Periods and harmonic analysis on spherical varieties, preprint, 2010.

62. P. Sarnak, L-functions, in Proceedings of the International Congress of Mathematicians, vol. I (Berlin, 1998), Documenta Mathematica (Extra volume), pp. 453–465. | Zbl | MR

63. P. Sarnak, Estimates for Rankin-Selberg L-functions and quantum unique ergodicity, J. Funct. Anal. 184 (2001), p. 419-453 | Zbl | MR

64. A. Venkatesh, Large sieve inequalities for GL(n)-forms in the conductor aspect, Adv. Math. 200 (2006), p. 336-356 | Zbl | MR

65. A. Venkatesh, Sparse equidistribution problems, period bounds, and subconvexity, Ann. Math., to appear, 2006. | Zbl | MR

66. A. Venkatesh, Notes on effective equidistribution, Pisa/CMI summer school 2007, unpublished, 2007.

67. J.-L. Waldspurger, Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie, Compos. Math. 54 (1985), p. 173-242 | Zbl | MR | mathdoc-id

68. H. Weyl, Zur abschätzung von ζ(1+it), Math. Z. 10 (1921), p. 88-101

69. D. Zagier, The Rankin-Selberg method for automorphic functions which are not of rapid decay, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), p. 415-437 | Zbl | MR

Cité par Sources :