Let ℳ be a von Neumann factor of type II1 with a normalized trace τ. In 1983 L. G. Brown showed that to every operator T∈ℳ one can in a natural way associate a spectral distribution measure μ T (now called the Brown measure of T), which is a probability measure in ℂ with support in the spectrum σ(T) of T. In this paper it is shown that for every T∈ℳ and every Borel set B in ℂ, there is a unique closed T-invariant subspace affiliated with ℳ, such that the Brown measure of is concentrated on B and the Brown measure of is concentrated on ℂ∖B. Moreover, is T-hyperinvariant and the trace of is equal to μ T(B). In particular, if T∈ℳ has a Brown measure which is not concentrated on a singleton, then there exists a non-trivial, closed, T-hyperinvariant subspace. Furthermore, it is shown that for every T∈ℳ the limit exists in the strong operator topology, and the projection onto is equal to 1[0,r](A), for every r>0.
@article{PMIHES_2009__109__19_0,
author = {Haagerup, Uffe and Schultz, Hanne},
title = {Invariant subspaces for operators in a general {II1-factor}},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {19--111},
year = {2009},
publisher = {Springer-Verlag},
volume = {109},
doi = {10.1007/s10240-009-0018-7},
mrnumber = {2511586},
zbl = {1178.46058},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-009-0018-7/}
}
TY - JOUR AU - Haagerup, Uffe AU - Schultz, Hanne TI - Invariant subspaces for operators in a general II1-factor JO - Publications Mathématiques de l'IHÉS PY - 2009 SP - 19 EP - 111 VL - 109 PB - Springer-Verlag UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-009-0018-7/ DO - 10.1007/s10240-009-0018-7 LA - en ID - PMIHES_2009__109__19_0 ER -
%0 Journal Article %A Haagerup, Uffe %A Schultz, Hanne %T Invariant subspaces for operators in a general II1-factor %J Publications Mathématiques de l'IHÉS %D 2009 %P 19-111 %V 109 %I Springer-Verlag %U http://geodesic.mathdoc.fr/articles/10.1007/s10240-009-0018-7/ %R 10.1007/s10240-009-0018-7 %G en %F PMIHES_2009__109__19_0
Haagerup, Uffe; Schultz, Hanne. Invariant subspaces for operators in a general II1-factor. Publications Mathématiques de l'IHÉS, Tome 109 (2009), pp. 19-111. doi: 10.1007/s10240-009-0018-7
Cité par Sources :