Voir la notice de l'article provenant de la source Numdam
We extend the results of [CHT] by removing the ‘minimal ramification' condition on the lifts. That is we establish the automorphy of suitable conjugate self-dual, regular (de Rham with distinct Hodge-Tate numbers), l-adic lifts of certain automorphic mod l Galois representations of any dimension. The main innovation is a new approach to the automorphy of non-minimal lifts which is closer in spirit to the methods of [TW] than to those of [W], which relied on Ihara's lemma.
@article{PMIHES_2008__108__183_0, author = {Taylor, Richard}, title = {Automorphy for some $l$-adic lifts of automorphic mod $l$ {Galois} representations. {II}}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {183--239}, publisher = {Springer-Verlag}, volume = {108}, year = {2008}, doi = {10.1007/s10240-008-0015-2}, mrnumber = {2470688}, zbl = {1169.11021}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-008-0015-2/} }
TY - JOUR AU - Taylor, Richard TI - Automorphy for some $l$-adic lifts of automorphic mod $l$ Galois representations. II JO - Publications Mathématiques de l'IHÉS PY - 2008 SP - 183 EP - 239 VL - 108 PB - Springer-Verlag UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-008-0015-2/ DO - 10.1007/s10240-008-0015-2 LA - en ID - PMIHES_2008__108__183_0 ER -
%0 Journal Article %A Taylor, Richard %T Automorphy for some $l$-adic lifts of automorphic mod $l$ Galois representations. II %J Publications Mathématiques de l'IHÉS %D 2008 %P 183-239 %V 108 %I Springer-Verlag %U http://geodesic.mathdoc.fr/articles/10.1007/s10240-008-0015-2/ %R 10.1007/s10240-008-0015-2 %G en %F PMIHES_2008__108__183_0
Taylor, Richard. Automorphy for some $l$-adic lifts of automorphic mod $l$ Galois representations. II. Publications Mathématiques de l'IHÉS, Tome 108 (2008), pp. 183-239. doi: 10.1007/s10240-008-0015-2
Cité par Sources :