Automorphy for some l -adic lifts of automorphic mod l Galois representations. II
Publications Mathématiques de l'IHÉS, Tome 108 (2008), pp. 183-239

Voir la notice de l'article provenant de la source Numdam

We extend the results of [CHT] by removing the ‘minimal ramification' condition on the lifts. That is we establish the automorphy of suitable conjugate self-dual, regular (de Rham with distinct Hodge-Tate numbers), l-adic lifts of certain automorphic mod l Galois representations of any dimension. The main innovation is a new approach to the automorphy of non-minimal lifts which is closer in spirit to the methods of [TW] than to those of [W], which relied on Ihara's lemma.

@article{PMIHES_2008__108__183_0,
     author = {Taylor, Richard},
     title = {Automorphy for some $l$-adic lifts of automorphic mod $l$ {Galois} representations. {II}},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {183--239},
     publisher = {Springer-Verlag},
     volume = {108},
     year = {2008},
     doi = {10.1007/s10240-008-0015-2},
     mrnumber = {2470688},
     zbl = {1169.11021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-008-0015-2/}
}
TY  - JOUR
AU  - Taylor, Richard
TI  - Automorphy for some $l$-adic lifts of automorphic mod $l$ Galois representations. II
JO  - Publications Mathématiques de l'IHÉS
PY  - 2008
SP  - 183
EP  - 239
VL  - 108
PB  - Springer-Verlag
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-008-0015-2/
DO  - 10.1007/s10240-008-0015-2
LA  - en
ID  - PMIHES_2008__108__183_0
ER  - 
%0 Journal Article
%A Taylor, Richard
%T Automorphy for some $l$-adic lifts of automorphic mod $l$ Galois representations. II
%J Publications Mathématiques de l'IHÉS
%D 2008
%P 183-239
%V 108
%I Springer-Verlag
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-008-0015-2/
%R 10.1007/s10240-008-0015-2
%G en
%F PMIHES_2008__108__183_0
Taylor, Richard. Automorphy for some $l$-adic lifts of automorphic mod $l$ Galois representations. II. Publications Mathématiques de l'IHÉS, Tome 108 (2008), pp. 183-239. doi: 10.1007/s10240-008-0015-2

Cité par Sources :