Nonabelian Hodge theory in characteristic p
Publications Mathématiques de l'IHÉS, Tome 106 (2007), pp. 1-138

Voir la notice de l'article provenant de la source Numdam

Given a scheme in characteristic p together with a lifting modulo p 2 , we construct a functor from a category of suitably nilpotent modules with connection to the category of Higgs modules. We use this functor to generalize the decomposition theorem of Deligne-Illusie to the case of de Rham cohomology with coefficients.

@article{PMIHES_2007__106__1_0,
     author = {Ogus, A. and Vologodsky, V.},
     title = {Nonabelian {Hodge} theory in characteristic $p$},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--138},
     publisher = {Springer},
     volume = {106},
     year = {2007},
     doi = {10.1007/s10240-007-0010-z},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-007-0010-z/}
}
TY  - JOUR
AU  - Ogus, A.
AU  - Vologodsky, V.
TI  - Nonabelian Hodge theory in characteristic $p$
JO  - Publications Mathématiques de l'IHÉS
PY  - 2007
SP  - 1
EP  - 138
VL  - 106
PB  - Springer
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-007-0010-z/
DO  - 10.1007/s10240-007-0010-z
LA  - en
ID  - PMIHES_2007__106__1_0
ER  - 
%0 Journal Article
%A Ogus, A.
%A Vologodsky, V.
%T Nonabelian Hodge theory in characteristic $p$
%J Publications Mathématiques de l'IHÉS
%D 2007
%P 1-138
%V 106
%I Springer
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-007-0010-z/
%R 10.1007/s10240-007-0010-z
%G en
%F PMIHES_2007__106__1_0
Ogus, A.; Vologodsky, V. Nonabelian Hodge theory in characteristic $p$. Publications Mathématiques de l'IHÉS, Tome 106 (2007), pp. 1-138. doi: 10.1007/s10240-007-0010-z

Cité par Sources :