Voir la notice de l'article provenant de la source Numdam
Given a scheme in characteristic together with a lifting modulo , we construct a functor from a category of suitably nilpotent modules with connection to the category of Higgs modules. We use this functor to generalize the decomposition theorem of Deligne-Illusie to the case of de Rham cohomology with coefficients.
@article{PMIHES_2007__106__1_0, author = {Ogus, A. and Vologodsky, V.}, title = {Nonabelian {Hodge} theory in characteristic $p$}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {1--138}, publisher = {Springer}, volume = {106}, year = {2007}, doi = {10.1007/s10240-007-0010-z}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-007-0010-z/} }
TY - JOUR AU - Ogus, A. AU - Vologodsky, V. TI - Nonabelian Hodge theory in characteristic $p$ JO - Publications Mathématiques de l'IHÉS PY - 2007 SP - 1 EP - 138 VL - 106 PB - Springer UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-007-0010-z/ DO - 10.1007/s10240-007-0010-z LA - en ID - PMIHES_2007__106__1_0 ER -
Ogus, A.; Vologodsky, V. Nonabelian Hodge theory in characteristic $p$. Publications Mathématiques de l'IHÉS, Tome 106 (2007), pp. 1-138. doi: 10.1007/s10240-007-0010-z
Cité par Sources :