Homological projective duality
Publications Mathématiques de l'IHÉS, Tome 105 (2007), pp. 157-220

Voir la notice de l'article provenant de la source Numdam

We introduce a notion of homological projective duality for smooth algebraic varieties in dual projective spaces, a homological extension of the classical projective duality. If algebraic varieties X and Y in dual projective spaces are homologically projectively dual, then we prove that the orthogonal linear sections of X and Y admit semiorthogonal decompositions with an equivalent nontrivial component. In particular, it follows that triangulated categories of singularities of these sections are equivalent. We also investigate homological projective duality for projectivizations of vector bundles.

@article{PMIHES_2007__105__157_0,
     author = {Kuznetsov, Alexander},
     title = {Homological projective duality},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {157--220},
     publisher = {Springer},
     volume = {105},
     year = {2007},
     doi = {10.1007/s10240-007-0006-8},
     mrnumber = {2354207},
     zbl = {1131.14017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-007-0006-8/}
}
TY  - JOUR
AU  - Kuznetsov, Alexander
TI  - Homological projective duality
JO  - Publications Mathématiques de l'IHÉS
PY  - 2007
SP  - 157
EP  - 220
VL  - 105
PB  - Springer
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-007-0006-8/
DO  - 10.1007/s10240-007-0006-8
LA  - en
ID  - PMIHES_2007__105__157_0
ER  - 
%0 Journal Article
%A Kuznetsov, Alexander
%T Homological projective duality
%J Publications Mathématiques de l'IHÉS
%D 2007
%P 157-220
%V 105
%I Springer
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-007-0006-8/
%R 10.1007/s10240-007-0006-8
%G en
%F PMIHES_2007__105__157_0
Kuznetsov, Alexander. Homological projective duality. Publications Mathématiques de l'IHÉS, Tome 105 (2007), pp. 157-220. doi: 10.1007/s10240-007-0006-8

Cité par Sources :