Cochains and homotopy type
Publications Mathématiques de l'IHÉS, Tome 103 (2006), pp. 213-246

Voir la notice de l'article provenant de la source Numdam

Finite type nilpotent spaces are weakly equivalent if and only if their singular cochains are quasi-isomorphic as E algebras. The cochain functor from the homotopy category of finite type nilpotent spaces to the homotopy category of E algebras is faithful but not full.

@article{PMIHES_2006__103__213_0,
     author = {Mandell, Michael A.},
     title = {Cochains and homotopy type},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {213--246},
     publisher = {Springer},
     volume = {103},
     year = {2006},
     doi = {10.1007/s10240-006-0037-6},
     mrnumber = {2233853},
     zbl = {1105.55003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-006-0037-6/}
}
TY  - JOUR
AU  - Mandell, Michael A.
TI  - Cochains and homotopy type
JO  - Publications Mathématiques de l'IHÉS
PY  - 2006
SP  - 213
EP  - 246
VL  - 103
PB  - Springer
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-006-0037-6/
DO  - 10.1007/s10240-006-0037-6
LA  - en
ID  - PMIHES_2006__103__213_0
ER  - 
%0 Journal Article
%A Mandell, Michael A.
%T Cochains and homotopy type
%J Publications Mathématiques de l'IHÉS
%D 2006
%P 213-246
%V 103
%I Springer
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-006-0037-6/
%R 10.1007/s10240-006-0037-6
%G en
%F PMIHES_2006__103__213_0
Mandell, Michael A. Cochains and homotopy type. Publications Mathématiques de l'IHÉS, Tome 103 (2006), pp. 213-246. doi: 10.1007/s10240-006-0037-6

Cité par Sources :