Voir la notice de l'article provenant de la source Numdam
Finite type nilpotent spaces are weakly equivalent if and only if their singular cochains are quasi-isomorphic as algebras. The cochain functor from the homotopy category of finite type nilpotent spaces to the homotopy category of algebras is faithful but not full.
@article{PMIHES_2006__103__213_0, author = {Mandell, Michael A.}, title = {Cochains and homotopy type}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {213--246}, publisher = {Springer}, volume = {103}, year = {2006}, doi = {10.1007/s10240-006-0037-6}, mrnumber = {2233853}, zbl = {1105.55003}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-006-0037-6/} }
TY - JOUR AU - Mandell, Michael A. TI - Cochains and homotopy type JO - Publications Mathématiques de l'IHÉS PY - 2006 SP - 213 EP - 246 VL - 103 PB - Springer UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-006-0037-6/ DO - 10.1007/s10240-006-0037-6 LA - en ID - PMIHES_2006__103__213_0 ER -
Mandell, Michael A. Cochains and homotopy type. Publications Mathématiques de l'IHÉS, Tome 103 (2006), pp. 213-246. doi: 10.1007/s10240-006-0037-6
Cité par Sources :