Periodic orbits and chain-transitive sets of C 1 -diffeomorphisms
Publications Mathématiques de l'IHÉS, Tome 104 (2006), pp. 87-141

Voir la notice de l'article provenant de la source Numdam

We prove that the chain-transitive sets of C 1 -generic diffeomorphisms are approximated in the Hausdorff topology by periodic orbits. This implies that the homoclinic classes are dense among the chain-recurrence classes. This result is a consequence of a global connecting lemma, which allows to build by a C 1 -perturbation an orbit connecting several prescribed points. One deduces a weak shadowing property satisfied by C 1 -generic diffeomorphisms: any pseudo-orbit is approximated in the Hausdorff topology by a finite segment of a genuine orbit. As a consequence, we obtain a criterion for proving the tolerance stability conjecture in Diff 1 (M).

@article{PMIHES_2006__104__87_0,
     author = {Crovisier, Sylvain},
     title = {Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {87--141},
     publisher = {Springer},
     volume = {104},
     year = {2006},
     doi = {10.1007/s10240-006-0002-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-006-0002-4/}
}
TY  - JOUR
AU  - Crovisier, Sylvain
TI  - Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms
JO  - Publications Mathématiques de l'IHÉS
PY  - 2006
SP  - 87
EP  - 141
VL  - 104
PB  - Springer
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-006-0002-4/
DO  - 10.1007/s10240-006-0002-4
LA  - en
ID  - PMIHES_2006__104__87_0
ER  - 
%0 Journal Article
%A Crovisier, Sylvain
%T Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms
%J Publications Mathématiques de l'IHÉS
%D 2006
%P 87-141
%V 104
%I Springer
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-006-0002-4/
%R 10.1007/s10240-006-0002-4
%G en
%F PMIHES_2006__104__87_0
Crovisier, Sylvain. Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms. Publications Mathématiques de l'IHÉS, Tome 104 (2006), pp. 87-141. doi: 10.1007/s10240-006-0002-4

Cité par Sources :