Voir la notice de l'article provenant de la source Numdam
We study the dynamics of the Teichmüller flow in the moduli space of abelian differentials (and more generally, its restriction to any connected component of a stratum). We show that the (Masur-Veech) absolutely continuous invariant probability measure is exponentially mixing for the class of Hölder observables. A geometric consequence is that the action in the moduli space has a spectral gap.
@article{PMIHES_2006__104__143_0, author = {Avila, Artur and Gou\"ezel, S\'ebastien and Yoccoz, Jean-Christophe}, title = {Exponential mixing for the {Teichm\"uller} flow}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {143--211}, publisher = {Springer}, volume = {104}, year = {2006}, doi = {10.1007/s10240-006-0001-5}, mrnumber = {2264836}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-006-0001-5/} }
TY - JOUR AU - Avila, Artur AU - Gouëzel, Sébastien AU - Yoccoz, Jean-Christophe TI - Exponential mixing for the Teichmüller flow JO - Publications Mathématiques de l'IHÉS PY - 2006 SP - 143 EP - 211 VL - 104 PB - Springer UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-006-0001-5/ DO - 10.1007/s10240-006-0001-5 LA - en ID - PMIHES_2006__104__143_0 ER -
%0 Journal Article %A Avila, Artur %A Gouëzel, Sébastien %A Yoccoz, Jean-Christophe %T Exponential mixing for the Teichmüller flow %J Publications Mathématiques de l'IHÉS %D 2006 %P 143-211 %V 104 %I Springer %U http://geodesic.mathdoc.fr/articles/10.1007/s10240-006-0001-5/ %R 10.1007/s10240-006-0001-5 %G en %F PMIHES_2006__104__143_0
Avila, Artur; Gouëzel, Sébastien; Yoccoz, Jean-Christophe. Exponential mixing for the Teichmüller flow. Publications Mathématiques de l'IHÉS, Tome 104 (2006), pp. 143-211. doi: 10.1007/s10240-006-0001-5
Cité par Sources :