The GL 2 main conjecture for elliptic curves without complex multiplication
Publications Mathématiques de l'IHÉS, Tome 101 (2005), pp. 163-208

Voir la notice de l'article provenant de la source Numdam

Let G be a compact p-adic Lie group, with no element of order p, and having a closed normal subgroup H such that G/H is isomorphic to 𝐙 p . We prove the existence of a canonical Ore set S * of non-zero divisors in the Iwasawa algebra Λ(G) of G, which seems to be particularly relevant for arithmetic applications. Using localization with respect to S * , we are able to define a characteristic element for every finitely generated Λ(G)-module M which has the property that the quotient of M by its p-primary submodule is finitely generated over the Iwasawa algebra of H. We discuss the evaluation of this characteristic element at Artin representations of G, and its relation to the G-Euler characteristics of the twists of M by such representations. Finally, we illustrate the arithmetic applications of these ideas by formulating a precise version of the main conjecture of Iwasawa theory for an elliptic curve E over 𝐐, without complex multiplication, over the field F generated by the coordinates of all its p-power division points; here p is a prime at least 5 where E has good ordinary reduction, and G is the Galois group of F over 𝐐.

DOI : 10.1007/s10240-004-0029-3

Coates, John  ; Fukaya, Takako  ; Kato, Kazuya  ; Sujatha, Ramdorai 1 ; Venjakob, Otmar 

1 School of Mathematics, TIFR, Homi Bhabha Road Bombay 400 005, India
@article{PMIHES_2005__101__163_0,
     author = {Coates, John and Fukaya, Takako and Kato, Kazuya and Sujatha, Ramdorai and Venjakob, Otmar},
     title = {The $GL_2$ main conjecture for elliptic curves without complex multiplication},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {163--208},
     publisher = {Springer},
     volume = {101},
     year = {2005},
     doi = {10.1007/s10240-004-0029-3},
     zbl = {1108.11081},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-004-0029-3/}
}
TY  - JOUR
AU  - Coates, John
AU  - Fukaya, Takako
AU  - Kato, Kazuya
AU  - Sujatha, Ramdorai
AU  - Venjakob, Otmar
TI  - The $GL_2$ main conjecture for elliptic curves without complex multiplication
JO  - Publications Mathématiques de l'IHÉS
PY  - 2005
SP  - 163
EP  - 208
VL  - 101
PB  - Springer
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-004-0029-3/
DO  - 10.1007/s10240-004-0029-3
LA  - en
ID  - PMIHES_2005__101__163_0
ER  - 
%0 Journal Article
%A Coates, John
%A Fukaya, Takako
%A Kato, Kazuya
%A Sujatha, Ramdorai
%A Venjakob, Otmar
%T The $GL_2$ main conjecture for elliptic curves without complex multiplication
%J Publications Mathématiques de l'IHÉS
%D 2005
%P 163-208
%V 101
%I Springer
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-004-0029-3/
%R 10.1007/s10240-004-0029-3
%G en
%F PMIHES_2005__101__163_0
Coates, John; Fukaya, Takako; Kato, Kazuya; Sujatha, Ramdorai; Venjakob, Otmar. The $GL_2$ main conjecture for elliptic curves without complex multiplication. Publications Mathématiques de l'IHÉS, Tome 101 (2005), pp. 163-208. doi: 10.1007/s10240-004-0029-3

Cité par Sources :