Voir la notice de l'article provenant de la source Numdam
In [6], S. Bloch conjectures a formula for the Artin conductor of the ℓ-adic etale cohomology of a regular model of a variety over a local field and proves it for a curve. The formula, which we call the conductor formula of Bloch, enables us to compute the conductor that measures the wild ramification by using the sheaf of differential 1-forms. In this paper, we prove the formula in arbitrary dimension under the assumption that the reduced closed fiber has normal crossings.
@article{PMIHES_2004__100__5_0, author = {Kato, Kazuya and Saito, Takeshi}, title = {On the conductor formula of {Bloch}}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {5--151}, publisher = {Springer}, volume = {100}, year = {2004}, doi = {10.1007/s10240-004-0026-6}, mrnumber = {2102698}, zbl = {1099.14009}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-004-0026-6/} }
TY - JOUR AU - Kato, Kazuya AU - Saito, Takeshi TI - On the conductor formula of Bloch JO - Publications Mathématiques de l'IHÉS PY - 2004 SP - 5 EP - 151 VL - 100 PB - Springer UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-004-0026-6/ DO - 10.1007/s10240-004-0026-6 LA - en ID - PMIHES_2004__100__5_0 ER -
Kato, Kazuya; Saito, Takeshi. On the conductor formula of Bloch. Publications Mathématiques de l'IHÉS, Tome 100 (2004), pp. 5-151. doi: 10.1007/s10240-004-0026-6
Cité par Sources :