On the conductor formula of Bloch
Publications Mathématiques de l'IHÉS, Tome 100 (2004), pp. 5-151

Voir la notice de l'article provenant de la source Numdam

In [6], S. Bloch conjectures a formula for the Artin conductor of the ℓ-adic etale cohomology of a regular model of a variety over a local field and proves it for a curve. The formula, which we call the conductor formula of Bloch, enables us to compute the conductor that measures the wild ramification by using the sheaf of differential 1-forms. In this paper, we prove the formula in arbitrary dimension under the assumption that the reduced closed fiber has normal crossings.

@article{PMIHES_2004__100__5_0,
     author = {Kato, Kazuya and Saito, Takeshi},
     title = {On the conductor formula of {Bloch}},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {5--151},
     publisher = {Springer},
     volume = {100},
     year = {2004},
     doi = {10.1007/s10240-004-0026-6},
     mrnumber = {2102698},
     zbl = {1099.14009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-004-0026-6/}
}
TY  - JOUR
AU  - Kato, Kazuya
AU  - Saito, Takeshi
TI  - On the conductor formula of Bloch
JO  - Publications Mathématiques de l'IHÉS
PY  - 2004
SP  - 5
EP  - 151
VL  - 100
PB  - Springer
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-004-0026-6/
DO  - 10.1007/s10240-004-0026-6
LA  - en
ID  - PMIHES_2004__100__5_0
ER  - 
%0 Journal Article
%A Kato, Kazuya
%A Saito, Takeshi
%T On the conductor formula of Bloch
%J Publications Mathématiques de l'IHÉS
%D 2004
%P 5-151
%V 100
%I Springer
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-004-0026-6/
%R 10.1007/s10240-004-0026-6
%G en
%F PMIHES_2004__100__5_0
Kato, Kazuya; Saito, Takeshi. On the conductor formula of Bloch. Publications Mathématiques de l'IHÉS, Tome 100 (2004), pp. 5-151. doi: 10.1007/s10240-004-0026-6

Cité par Sources :