Voir la notice de l'article provenant de la source Numdam
We study the possible dimension vectors of indecomposable parabolic bundles on the projective line, and use our answer to solve the problem of characterizing those collections of conjugacy classes of matrices for which one can find matrices in their closures whose product is equal to the identity matrix. Both answers depend on the root system of a Kac-Moody Lie algebra. Our proofs use Ringel’s theory of tubular algebras, work of Mihai on the existence of logarithmic connections, the Riemann-Hilbert correspondence and an algebraic version, due to Dettweiler and Reiter, of Katz’s middle convolution operation.
@article{PMIHES_2004__100__171_0, author = {Crawley-Boevey, William}, title = {Indecomposable parabolic bundles}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {171--207}, publisher = {Springer}, volume = {100}, year = {2004}, doi = {10.1007/s10240-004-0025-7}, mrnumber = {2102700}, zbl = {1065.14040}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-004-0025-7/} }
TY - JOUR AU - Crawley-Boevey, William TI - Indecomposable parabolic bundles JO - Publications Mathématiques de l'IHÉS PY - 2004 SP - 171 EP - 207 VL - 100 PB - Springer UR - http://geodesic.mathdoc.fr/articles/10.1007/s10240-004-0025-7/ DO - 10.1007/s10240-004-0025-7 LA - en ID - PMIHES_2004__100__171_0 ER -
Crawley-Boevey, William. Indecomposable parabolic bundles. Publications Mathématiques de l'IHÉS, Tome 100 (2004), pp. 171-207. doi: 10.1007/s10240-004-0025-7
Cité par Sources :