Functoriality for the classical groups
Publications Mathématiques de l'IHÉS, Tome 99 (2004), pp. 163-233.

Voir la notice de l'article provenant de la source Numdam

@article{PMIHES_2004__99__163_0,
     author = {Cogdell, J. W. and Kim, H. H. and Piatetski-Shapiro, I. I. and Shahidi, F.},
     title = {Functoriality for the classical groups},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {163--233},
     publisher = {Springer},
     volume = {99},
     year = {2004},
     doi = {10.1007/s10240-004-0020-z},
     mrnumber = {2075885},
     zbl = {1090.22010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-004-0020-z/}
}
TY  - JOUR
AU  - Cogdell, J. W.
AU  - Kim, H. H.
AU  - Piatetski-Shapiro, I. I.
AU  - Shahidi, F.
TI  - Functoriality for the classical groups
JO  - Publications Mathématiques de l'IHÉS
PY  - 2004
SP  - 163
EP  - 233
VL  - 99
PB  - Springer
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-004-0020-z/
DO  - 10.1007/s10240-004-0020-z
LA  - en
ID  - PMIHES_2004__99__163_0
ER  - 
%0 Journal Article
%A Cogdell, J. W.
%A Kim, H. H.
%A Piatetski-Shapiro, I. I.
%A Shahidi, F.
%T Functoriality for the classical groups
%J Publications Mathématiques de l'IHÉS
%D 2004
%P 163-233
%V 99
%I Springer
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-004-0020-z/
%R 10.1007/s10240-004-0020-z
%G en
%F PMIHES_2004__99__163_0
Cogdell, J. W.; Kim, H. H.; Piatetski-Shapiro, I. I.; Shahidi, F. Functoriality for the classical groups. Publications Mathématiques de l'IHÉS, Tome 99 (2004), pp. 163-233. doi : 10.1007/s10240-004-0020-z. http://geodesic.mathdoc.fr/articles/10.1007/s10240-004-0020-z/

1. J. Arthur, The principle of functoriality, Bull. Am. Math. Soc., 40 (2002), 39-53. | MR

2. A. Borel, Automorphic L-functions, Proc. Symp. Pure Math., 33, part 2 (1979), 27-61. | Zbl | MR

3. N. Bourbaki, Algèbre Commutative, Ch. 3 et 4, Actualités Scientifiques et Industrielles, no. 1293. Hermann, Paris (1961).

4. W. Casselman and F. Shahidi, On reducibility of standard modules for generic representations, Ann. Sci. Éc. Norm. Supér., 31 (1998), 561-589. | Zbl | MR | mathdoc-id

5. J. W. Cogdell, Dual groups and Langlands Functoriality, An Introduction to the Langlands Program (J. Bernstein and S. Gelbart, eds.). Birkhäuser, Boston (2003), 251-268. | Zbl | MR

6. J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro, and F. Shahidi, On lifting from classical groups to GLN, Publ. Math., Inst. Hautes Étud. Sci., 93 (2001), 5-30. | Zbl | MR | mathdoc-id

7. J. W. Cogdell and I. I. Piatetski-Shapiro, Converse Theorems for GLn , Publ. Math., Inst. Hautes Étud. Sci., 79 (1994), 157-214. | Zbl | MR | mathdoc-id

8. J. W. Cogdell and I. I. Piatetski-Shapiro, Stability of gamma factors for SO(2n+1), Manuscr. Math., 95 (1998), 437-461. | Zbl | MR

9. J. W. Cogdell and I. I. Piatetski-Shapiro, Converse Theorems for GLn , II, J. Reine Angew. Math., 507 (1999), 165-188. | Zbl | MR

10. J. W. Cogdell, I. I. Piatetski-Shapiro, and F. Shahidi, On stability of local γ-factors, in preparation.

11. S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. Éc. Norm. Supér., IV. Sér., 11 (1978), 471-542. | Zbl | MR | mathdoc-id

12. S. Gelbart and F. Shahidi, Boundedness of automorphic L-functions in vertical strips, J. Am. Math. Soc., 14 (2001), 79-107. | Zbl | MR

13. D. Ginzburg, S. Rallis, and D. Soudry, Generic automorphic forms on SO(2n+1): functorial lift to GL(2n), endoscopy, and base change, Int. Math. Res. Not., 2001, no. 14 (2001), 729-764. | Zbl | MR

14. R. Godement and H. Jacquet, Zeta Functions of Simple Algebras, Lect. Notes Math., 260. Springer-Verlag, Berlin (1972). | Zbl | MR

15. M. Harris and R. Taylor, The Geometry and Cohomology of Some Simple Shimura Varieties, Ann. Math. Stud., 151. Princeton University Press, Princeton (2001). | Zbl | MR

16. G. Henniart, Caractérisation de la correspondance de Langlands locale par les facteurs ε de paires, Invent. Math., 113 (1993), 339-350. | Zbl

17. G. Henniart, Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique, Invent. Math., 139 (2000), 439-455. | Zbl | MR

18. R. Howe and I. I. Piatetski-Shapiro, A counter-example to the “generalized Ramanujan conjecture” for (quasi)-split groups, Proc. Symp. Pure Math., 33, part 1 (1979), 315-322. | Zbl

19. H. Jacquet, I. I. Piatetski-Shapiro, and J. Shalika, Conducteur des représentations du groupe linéaire., Math. Ann., 256 (1981), 199-214. | Zbl | MR

20. H. Jacquet, I. I. Piatetski-Shapiro, and J. Shalika, Rankin-Selberg convolutions, Am. J. Math., 105 (1983), 367-464. | Zbl | MR

21. H. Jacquet and J. Shalika, On Euler products and the classification of automorphic representations, Am. J. Math., 103 (1981), 499-558 and 777-815. | Zbl

22. H. Jacquet and J. Shalika, The Whittaker models for induced representations, Pac. J. Math., 109 (1983), 107-120. | Zbl | MR

23. H. Jacquet and J. Shalika, A lemma on highly ramified ε-factors, Math. Ann., 271 (1985), 319-332. | Zbl

24. C. Jantzen, On square integrable representations of classical p-adic groups, Can. J. Math., 52 (2000), 539-581. | Zbl | MR

25. C. Jantzen, On square integrable representations of classical p-adic groups II, Represent. Theory, 4 (2000), 127-180. | Zbl | MR

26. D. Jiang and D. Soudry, The local converse theorem for SO(2n+1) and applications, Ann. Math., 157 (2003), 743-806. | Zbl | MR

27. D. Jiang and D. Soudry, Generic representations and local Langlands reciprocity law for p-adic SO2n+1, Contributions to Automorphic Forms, Geometry and Number Theory (Shalikafest 2002) (H. Hida, D. Ramakrishnan, and F. Shahidi, eds.). Johns Hopkins University Press, Baltimore, to appear. | Zbl | MR

28. H. Kim, Langlands-Shahidi method and poles of automorphic L-functions, II, Isr. J. Math., 117 (2000), 261-284. | Zbl | MR

29. H. Kim, Residual spectrum of odd orthogonal groups, Int. Math. Res. Not. 2001, no. 17 (2001), 873-906. | Zbl | MR

30. H. Kim, Applications of Langlands' functoriality of odd orthogonal groups, Trans. Am. Math. Soc., 354 (2002), 2775-2796. | Zbl

31. H. Kim, On local L-functions and normalized intertwining operators, Can. J. Math., to appear. | Zbl | MR

32. H. Kim and F. Shahidi, Functorial products for GL2×GL3 and the symmetric cube for GL2, Ann. Math., 155 (2002), 837-893. | Zbl | MR

33. L. Lafforgue, Chtoucas de Drinfeld at correspondance de Langlands, Invent. Math., 147 (2002) 1-241. | Zbl | MR

34. R. P. Langlands, On the classification of irreducible representations of real algebraic groups, Representation Theory and Harmonic Analysis on Semisimple Lie Groups, Math. Surv. Monogr., 31. Am. Math. Soc., Providence, RI (1989), 101-170. | Zbl | MR

35. R. P. Langlands, Automorphic representations, Shimura varieties, and motives. Ein Märchen, Proc. Symp. Pure Math., 33, part 2 (1979), 205-246. | Zbl | MR

36. R. P. Langlands, Where stands functoriality today, Proc. Symp. Pure Math., 61 (1997), 457-471. | Zbl | MR

37. W. Luo, Z. Rudnick, and P. Sarnak, On the generalized Ramanujan conjecture for GL(n), Proc. Symp. Pure Math., 66, part 2 (1999), 301-310. | Zbl | MR

38. C. Moeglin, Points de réducibilité pour les induits de cuspidals, preprint (2001). | Zbl

39. C. Moeglin, Sur la classification des séries discrètes des groupes classiques p-adiques: paramètres de Langlands et exhaustivité, J. Eur. Math. Soc., 4 (2002), 141-200. | Zbl | MR

40. C. Moeglin and M. Tadić, Construction of discrete series for p-adic classical groups, J. Am. Math. Soc., 15 (2002), 715-786. | Zbl | MR

41. C. Moeglin and J-L. Waldspurger, Le spectre résiduel de GL(n), Ann. Sci. Éc. Norm. Supér., 22 (1989), 605-674. | Zbl | MR | mathdoc-id

42. G. Muić, On generic irreducible representations of Sp(n,F) and SO(2n+1,F), Glas. Mat., III. Ser., 33 (53) (1998), 19-31. | Zbl | MR

43. G. Muić, Some results on square integrable representations; Irreducibility of standard representations, Int. Math. Res. Not., 1998, no. 14 (1998), 705-726. | Zbl | MR

44. G. Muić, A proof of Casselman-Shahidi's conjecture for quasi-split classical groups, Can. Math. Bull., 44 (2001), 298-312. | Zbl

45. I. I. Piatetski-Shapiro, Multiplicity one theorems, Proc. Symp. Pure Math., 33, part 1 (1979), 209-212. | Zbl | MR

46. P. Sarnak, Estimates for Rankin-Selberg L-functions and quantum unique ergodicity, J. Funct. Anal., 184 (2001), 419-453. | Zbl | MR

47. I. Satake, Theory of spherical functions on reductive algebraic groups over 𝔭-adic fields, Publ. Math., Inst. Hautes Étud. Sci., 18 (1963), 5-69. | Zbl | MR | mathdoc-id

48. F. Shahidi, On certain L-functions, Am. J. Math., 103 (1981), 297-355. | Zbl | MR

49. F. Shahidi, Local coefficients as Artin factors for real groups, Duke Math. J., 52 (1985), 973-1007. | Zbl | MR

50. F. Shahidi, On the Ramanujan conjecture and finiteness of poles for certain L-functions, Ann. Math., 127 (1988), 547-584. | Zbl | MR

51. F. Shahidi, A proof of Langlands' conjecture on Plancherel measures; complementary series for p-adic groups, Ann. Math., 132 (1990), 273-330. | Zbl

52. F. Shahidi, On multiplicativity of local factors, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, part II (Ramat Aviv, 1989), Israel Math. Conf. Proc., 3, Weizmann, Jerusalem (1990), 279-289. | Zbl | MR

53. F. Shahidi, Twisted endoscopy and reducibility of induced representations for p-adic groups, Duke Math. J., 66 (1992), 1-41. | Zbl | MR

54. F. Shahidi, Twists of a general class of L-functions by highly ramified characters, Can. Math. Bull., 43 (2000), 380-384. | Zbl | MR

55. F. Shahidi, Local coefficients as Mellin transforms of Bessel functions; Towards a general stability, Int. Math. Res. Not., 2002, no. 39 (2002), 2075-2119. | Zbl | MR

56. D. Soudry, On Langlands functoriality from classical groups to GLn , Astérisque, to appear. | Zbl | MR | mathdoc-id

57. R. Steinberg, Lectures on Chevalley Groups. Yale Lecture Notes, New Haven (1967). | MR

58. M. Tadić, Classification of unitary representations in irreducible representations of general linear groups (non-Archimedean case), Ann. Sci. Éc. Norm. Supér., IV. Sér., 19 (1986), 335-382. | Zbl | MR | mathdoc-id

59. J. Tate, Number theoretic background, Proc. Symp. Pure Math., 33, part 2 (1979), 3-26. | Zbl | MR

60. D. Vogan, Gelfand-Kirillov dimension for Harish-Chandra modules, Invent. Math., 48 (1978), 75-98. | Zbl | MR

61. A. Zelevinsky, Induced representations of reductive 𝔭-adic groups, II, Ann. Sci. Éc. Norm. Supér., 13 (1980), 165-210. | Zbl | MR | mathdoc-id

62. Y. Zhang, The holomorphy and nonvanishing of normalized local intertwining operators, Pac. J. Math., 180 (1997), 386-398. | Zbl | MR

Cité par Sources :