The Connes-Kasparov conjecture for almost connected groups and for linear p-adic groups
Publications Mathématiques de l'IHÉS, Tome 97 (2003), pp. 239-278

Voir la notice de l'article provenant de la source Numdam

Let G be a locally compact group with cocompact connected component. We prove that the assembly map from the topological K-theory of G to the K-theory of the reduced C * -algebra of G is an isomorphism. The same is shown for the groups of k-rational points of any linear algebraic group over a local field k of characteristic zero.

@article{PMIHES_2003__97__239_0,
     author = {Chabert, J\'er\^ome and Echterhoff, Siegfried and Nest, Ryszard},
     title = {The {Connes-Kasparov} conjecture for almost connected groups and for linear $p$-adic groups},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {239--278},
     publisher = {Springer},
     volume = {97},
     year = {2003},
     doi = {10.1007/s10240-003-0014-2},
     zbl = {1048.46057},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-003-0014-2/}
}
TY  - JOUR
AU  - Chabert, Jérôme
AU  - Echterhoff, Siegfried
AU  - Nest, Ryszard
TI  - The Connes-Kasparov conjecture for almost connected groups and for linear $p$-adic groups
JO  - Publications Mathématiques de l'IHÉS
PY  - 2003
SP  - 239
EP  - 278
VL  - 97
PB  - Springer
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-003-0014-2/
DO  - 10.1007/s10240-003-0014-2
LA  - en
ID  - PMIHES_2003__97__239_0
ER  - 
%0 Journal Article
%A Chabert, Jérôme
%A Echterhoff, Siegfried
%A Nest, Ryszard
%T The Connes-Kasparov conjecture for almost connected groups and for linear $p$-adic groups
%J Publications Mathématiques de l'IHÉS
%D 2003
%P 239-278
%V 97
%I Springer
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-003-0014-2/
%R 10.1007/s10240-003-0014-2
%G en
%F PMIHES_2003__97__239_0
Chabert, Jérôme; Echterhoff, Siegfried; Nest, Ryszard. The Connes-Kasparov conjecture for almost connected groups and for linear $p$-adic groups. Publications Mathématiques de l'IHÉS, Tome 97 (2003), pp. 239-278. doi: 10.1007/s10240-003-0014-2

Cité par Sources :