Convexes hyperboliques et fonctions quasisymétriques
Publications Mathématiques de l'IHÉS, Tome 97 (2003), pp. 181-237

Voir la notice de l'article provenant de la source Numdam

Every bounded convex open set Ω of 𝐑 m is endowed with its Hilbert metric d Ω . We give a necessary and sufficient condition, called quasisymmetric convexity, for this metric space to be hyperbolic. As a corollary, when the boundary is real analytic, Ω is always hyperbolic. In dimension 2, this condition is: in affine coordinates, the boundary Ω is locally the graph of a C 1 strictly convex function whose derivative is quasisymmetric.

@article{PMIHES_2003__97__181_0,
     author = {Benoist, Yves},
     title = {Convexes hyperboliques et fonctions quasisym\'etriques},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {181--237},
     publisher = {Springer},
     volume = {97},
     year = {2003},
     doi = {10.1007/s10240-003-0012-4},
     mrnumber = {2010741},
     zbl = {1049.53027},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10240-003-0012-4/}
}
TY  - JOUR
AU  - Benoist, Yves
TI  - Convexes hyperboliques et fonctions quasisymétriques
JO  - Publications Mathématiques de l'IHÉS
PY  - 2003
SP  - 181
EP  - 237
VL  - 97
PB  - Springer
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10240-003-0012-4/
DO  - 10.1007/s10240-003-0012-4
LA  - fr
ID  - PMIHES_2003__97__181_0
ER  - 
%0 Journal Article
%A Benoist, Yves
%T Convexes hyperboliques et fonctions quasisymétriques
%J Publications Mathématiques de l'IHÉS
%D 2003
%P 181-237
%V 97
%I Springer
%U http://geodesic.mathdoc.fr/articles/10.1007/s10240-003-0012-4/
%R 10.1007/s10240-003-0012-4
%G fr
%F PMIHES_2003__97__181_0
Benoist, Yves. Convexes hyperboliques et fonctions quasisymétriques. Publications Mathématiques de l'IHÉS, Tome 97 (2003), pp. 181-237. doi: 10.1007/s10240-003-0012-4

Cité par Sources :