An index inequality for embedded pseudoholomorphic curves in symplectizations
Journal of the European Mathematical Society, Tome 4 (2002) no. 4, pp. 313-361
Cet article a éte moissonné depuis la source EMS Press
Let D be a surface with a symplectic form, let J be a symplectomorphism of D, and let Y be the mapping torus of J. We show that the dimensions of moduli spaces of embedded pseudoholomorphic curves in Â2Y, with cylindrical ends asymptotic to periodic orbits of J or multiple covers thereof, are bounded from above by an additive relative index. We deduce some compactness results for these moduli spaces. This paper establishes some of the foundations for a program with Michael Thaddeus, to understand the Seiberg-Witten Floer homology of Y in terms of such pseudoholomorphic curves. Analogues of our results should also hold in three dimensional contact topology.
@article{JEMS_2002_4_4_a0,
author = {Michael Hutchings},
title = {An index inequality for embedded pseudoholomorphic curves in symplectizations},
journal = {Journal of the European Mathematical Society},
pages = {313--361},
year = {2002},
volume = {4},
number = {4},
doi = {10.1007/s100970100041},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s100970100041/}
}
TY - JOUR AU - Michael Hutchings TI - An index inequality for embedded pseudoholomorphic curves in symplectizations JO - Journal of the European Mathematical Society PY - 2002 SP - 313 EP - 361 VL - 4 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s100970100041/ DO - 10.1007/s100970100041 ID - JEMS_2002_4_4_a0 ER -
%0 Journal Article %A Michael Hutchings %T An index inequality for embedded pseudoholomorphic curves in symplectizations %J Journal of the European Mathematical Society %D 2002 %P 313-361 %V 4 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s100970100041/ %R 10.1007/s100970100041 %F JEMS_2002_4_4_a0
Michael Hutchings. An index inequality for embedded pseudoholomorphic curves in symplectizations. Journal of the European Mathematical Society, Tome 4 (2002) no. 4, pp. 313-361. doi: 10.1007/s100970100041
Cité par Sources :