Pruning theory and Thurston's classification of surface homeomorphisms
Journal of the European Mathematical Society, Tome 3 (2001) no. 4, pp. 287-333.

Voir la notice de l'article provenant de la source EMS Press

Two dynamical deformation theories are presented - one for surface homeomorphisms, called pruning, and another for graph endomorphisms, called kneading - both giving conditions under which all of the dynamics in an open set can be destroyed, while leaving the dynamics unchanged elsewhere. The theories are related to each other and to Thurston's classification of surface homeomorphisms up to isotopy.
DOI : 10.1007/s100970100034
Classification : 14-XX, 00-XX
Keywords:
@article{JEMS_2001_3_4_a0,
     author = {Andr\'e de Carvalho and Toby Hall},
     title = {Pruning theory and {Thurston's} classification of surface homeomorphisms},
     journal = {Journal of the European Mathematical Society},
     pages = {287--333},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2001},
     doi = {10.1007/s100970100034},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s100970100034/}
}
TY  - JOUR
AU  - André de Carvalho
AU  - Toby Hall
TI  - Pruning theory and Thurston's classification of surface homeomorphisms
JO  - Journal of the European Mathematical Society
PY  - 2001
SP  - 287
EP  - 333
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s100970100034/
DO  - 10.1007/s100970100034
ID  - JEMS_2001_3_4_a0
ER  - 
%0 Journal Article
%A André de Carvalho
%A Toby Hall
%T Pruning theory and Thurston's classification of surface homeomorphisms
%J Journal of the European Mathematical Society
%D 2001
%P 287-333
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s100970100034/
%R 10.1007/s100970100034
%F JEMS_2001_3_4_a0
André de Carvalho; Toby Hall. Pruning theory and Thurston's classification of surface homeomorphisms. Journal of the European Mathematical Society, Tome 3 (2001) no. 4, pp. 287-333. doi : 10.1007/s100970100034. http://geodesic.mathdoc.fr/articles/10.1007/s100970100034/

Cité par Sources :