Asymptotic behaviour and the moduli space of doubly-periodic instantons
Journal of the European Mathematical Society, Tome 3 (2001) no. 4, pp. 335-375.

Voir la notice de l'article provenant de la source EMS Press

We study doubly-periodic instantons, i.e. instantons on the product of a 1-dimensional complex torus T with a complex line 3, with quadratic curvature decay. We determine the asymptotic behaviour of these instantons, constructing new asymptotic invariants. We show that the underlying holomorphic bundle extends to T2À1. The converse statement is also true, namely a holomorphic bundle on T2À1 which is flat on the torus at infinity, and satisfies a stability condition, comes from a doubly-periodic instanton. Finally, we study the hyperkähler geometry of the moduli space of doubly-periodic instantons, and prove that the Nahm transform previously defined by the second author is a hyperkähler isometry with the moduli space of certain meromorphic Higgs bundles on the dual torus.
DOI : 10.1007/s100970100032
Classification : 53-XX, 00-XX
Keywords:
@article{JEMS_2001_3_4_a1,
     author = {Olivier Biquard and Marcos Jardim},
     title = {Asymptotic behaviour and the moduli space of doubly-periodic instantons},
     journal = {Journal of the European Mathematical Society},
     pages = {335--375},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2001},
     doi = {10.1007/s100970100032},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s100970100032/}
}
TY  - JOUR
AU  - Olivier Biquard
AU  - Marcos Jardim
TI  - Asymptotic behaviour and the moduli space of doubly-periodic instantons
JO  - Journal of the European Mathematical Society
PY  - 2001
SP  - 335
EP  - 375
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s100970100032/
DO  - 10.1007/s100970100032
ID  - JEMS_2001_3_4_a1
ER  - 
%0 Journal Article
%A Olivier Biquard
%A Marcos Jardim
%T Asymptotic behaviour and the moduli space of doubly-periodic instantons
%J Journal of the European Mathematical Society
%D 2001
%P 335-375
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s100970100032/
%R 10.1007/s100970100032
%F JEMS_2001_3_4_a1
Olivier Biquard; Marcos Jardim. Asymptotic behaviour and the moduli space of doubly-periodic instantons. Journal of the European Mathematical Society, Tome 3 (2001) no. 4, pp. 335-375. doi : 10.1007/s100970100032. http://geodesic.mathdoc.fr/articles/10.1007/s100970100032/

Cité par Sources :