Some examples of 5 and 7 descent for elliptic curves over Q
Journal of the European Mathematical Society, Tome 3 (2001) no. 2, pp. 169-201
Voir la notice de l'article provenant de la source EMS Press
We perform descent calculations for the families of elliptic curves over Q with a rational point of order n = 5 or 7. These calculations give an estimate for the Mordell-Weil rank which we relate to the parity conjecture. We exhibit explicit elements of the Tate-Shafarevich group of order 5 and 7, and show that the 5-torsion of the Tate-Shafarevich group of an elliptic curve over Q may become arbitrarily large.
@article{JEMS_2001_3_2_a2,
author = {Tom Fisher},
title = {Some examples of 5 and 7 descent for elliptic curves over {Q}},
journal = {Journal of the European Mathematical Society},
pages = {169--201},
publisher = {mathdoc},
volume = {3},
number = {2},
year = {2001},
doi = {10.1007/s100970100030},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s100970100030/}
}
TY - JOUR AU - Tom Fisher TI - Some examples of 5 and 7 descent for elliptic curves over Q JO - Journal of the European Mathematical Society PY - 2001 SP - 169 EP - 201 VL - 3 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s100970100030/ DO - 10.1007/s100970100030 ID - JEMS_2001_3_2_a2 ER -
Tom Fisher. Some examples of 5 and 7 descent for elliptic curves over Q. Journal of the European Mathematical Society, Tome 3 (2001) no. 2, pp. 169-201. doi: 10.1007/s100970100030
Cité par Sources :