Almost invariant submanifolds for compact group actions
Journal of the European Mathematical Society, Tome 2 (2000) no. 1, pp. 53-86.

Voir la notice de l'article provenant de la source EMS Press

Abstract. We define a C1 distance between submanifolds of a riemannian manifold M and show that, if a compact submanifold N is not moved too much under the isometric action of a compact group G, there is a G-invariant submanifold C1-close to N. The proof involves a procedure of averaging nearby submanifolds of riemannian manifolds in a symmetric way. The procedure combines averaging techniques of Cartan, Grove/Karcher, and de la Harpe/Karoubi with Whitney's idea of realizing submanifolds as zeros of sections of extended normal bundles.
DOI : 10.1007/s100970050014
Classification : 53-XX, 57-XX, 00-XX
Keywords:
@article{JEMS_2000_2_1_a1,
     author = {Alan Weinstein},
     title = {Almost invariant submanifolds for compact group actions},
     journal = {Journal of the European Mathematical Society},
     pages = {53--86},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2000},
     doi = {10.1007/s100970050014},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s100970050014/}
}
TY  - JOUR
AU  - Alan Weinstein
TI  - Almost invariant submanifolds for compact group actions
JO  - Journal of the European Mathematical Society
PY  - 2000
SP  - 53
EP  - 86
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s100970050014/
DO  - 10.1007/s100970050014
ID  - JEMS_2000_2_1_a1
ER  - 
%0 Journal Article
%A Alan Weinstein
%T Almost invariant submanifolds for compact group actions
%J Journal of the European Mathematical Society
%D 2000
%P 53-86
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s100970050014/
%R 10.1007/s100970050014
%F JEMS_2000_2_1_a1
Alan Weinstein. Almost invariant submanifolds for compact group actions. Journal of the European Mathematical Society, Tome 2 (2000) no. 1, pp. 53-86. doi : 10.1007/s100970050014. http://geodesic.mathdoc.fr/articles/10.1007/s100970050014/

Cité par Sources :