Stable ergodicity and julienne quasi-conformality
Journal of the European Mathematical Society, Tome 2 (2000) no. 1, pp. 1-52
Cet article a éte moissonné depuis la source EMS Press
In this paper we dramatically expand the domain of known stably ergodic, partially hyperbolic dynamical systems. For example, all partially hyperbolic affine diffeomorphisms of compact homogeneous spaces which have the accessibility property are stably ergodic. Our main tools are the new concepts - julienne density point and julienne quasi-conformality of the stable and unstable holonomy maps. Julienne quasi-conformal holonomy maps preserve all julienne density points.
@article{JEMS_2000_2_1_a0,
author = {Charles Pugh and Michael Shub},
title = {Stable ergodicity and julienne quasi-conformality},
journal = {Journal of the European Mathematical Society},
pages = {1--52},
year = {2000},
volume = {2},
number = {1},
doi = {10.1007/s100970050013},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s100970050013/}
}
TY - JOUR AU - Charles Pugh AU - Michael Shub TI - Stable ergodicity and julienne quasi-conformality JO - Journal of the European Mathematical Society PY - 2000 SP - 1 EP - 52 VL - 2 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s100970050013/ DO - 10.1007/s100970050013 ID - JEMS_2000_2_1_a0 ER -
Charles Pugh; Michael Shub. Stable ergodicity and julienne quasi-conformality. Journal of the European Mathematical Society, Tome 2 (2000) no. 1, pp. 1-52. doi: 10.1007/s100970050013
Cité par Sources :