Effective Nullstellensatz for arbitrary ideals
Journal of the European Mathematical Society, Tome 1 (1999) no. 3, pp. 313-337
Cet article a éte moissonné depuis la source EMS Press
Let fi be polynomials in n variables without a common zero. Hilbert's Nullstellensatz says that there are polynomials gi such that ∑gifi=1. The effective versions of this result bound the degrees of the gi in terms of the degrees of the fj. The aim of this paper is to generalize this to the case when the fi are replaced by arbitrary ideals. Applications to the Bézout theorem, to Łojasiewicz-type inequalities and to deformation theory are also discussed.
@article{JEMS_1999_1_3_a1,
author = {J\'anos Koll\'ar},
title = {Effective {Nullstellensatz} for arbitrary ideals},
journal = {Journal of the European Mathematical Society},
pages = {313--337},
year = {1999},
volume = {1},
number = {3},
doi = {10.1007/s100970050009},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s100970050009/}
}
János Kollár. Effective Nullstellensatz for arbitrary ideals. Journal of the European Mathematical Society, Tome 1 (1999) no. 3, pp. 313-337. doi: 10.1007/s100970050009
Cité par Sources :