Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents
Journal of the European Mathematical Society, Tome 1 (1999) no. 3, pp. 237-311
Voir la notice de l'article provenant de la source EMS Press
Abstract. There is an obvious topological obstruction for a finite energy unimodular harmonic extension of a S1-valued function defined on the boundary of a bounded regular domain of Rn. When such extensions do not exist, we use the Ginzburg–Landau relaxation procedure. We prove that, up to a subsequence, a sequence of Ginzburg–Landau minimizers, as the coupling parameter tends to infinity, converges to a unimodular harmonic map away from a codimension-2 minimal current minimizing the area within the homology class induced from the S1-valued boundary data. The union of this harmonic map and the minimal current is the natural generalization of the harmonic extension.
@article{JEMS_1999_1_3_a0,
author = {Fanghua Lin and Tristan Rivi\`ere},
title = {Complex {Ginzburg-Landau} equations in high dimensions and codimension two area minimizing currents},
journal = {Journal of the European Mathematical Society},
pages = {237--311},
publisher = {mathdoc},
volume = {1},
number = {3},
year = {1999},
doi = {10.1007/s100970050008},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s100970050008/}
}
TY - JOUR AU - Fanghua Lin AU - Tristan Rivière TI - Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents JO - Journal of the European Mathematical Society PY - 1999 SP - 237 EP - 311 VL - 1 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s100970050008/ DO - 10.1007/s100970050008 ID - JEMS_1999_1_3_a0 ER -
%0 Journal Article %A Fanghua Lin %A Tristan Rivière %T Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents %J Journal of the European Mathematical Society %D 1999 %P 237-311 %V 1 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s100970050008/ %R 10.1007/s100970050008 %F JEMS_1999_1_3_a0
Fanghua Lin; Tristan Rivière. Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents. Journal of the European Mathematical Society, Tome 1 (1999) no. 3, pp. 237-311. doi: 10.1007/s100970050008
Cité par Sources :