Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents
Journal of the European Mathematical Society, Tome 1 (1999) no. 3, pp. 237-311.

Voir la notice de l'article provenant de la source EMS Press

Abstract. There is an obvious topological obstruction for a finite energy unimodular harmonic extension of a S1-valued function defined on the boundary of a bounded regular domain of Rn. When such extensions do not exist, we use the Ginzburg–Landau relaxation procedure. We prove that, up to a subsequence, a sequence of Ginzburg–Landau minimizers, as the coupling parameter tends to infinity, converges to a unimodular harmonic map away from a codimension-2 minimal current minimizing the area within the homology class induced from the S1-valued boundary data. The union of this harmonic map and the minimal current is the natural generalization of the harmonic extension.
DOI : 10.1007/s100970050008
Classification : 35-XX, 49-XX, 53-XX, 58-XX
Keywords:
@article{JEMS_1999_1_3_a0,
     author = {Fanghua Lin and Tristan Rivi\`ere},
     title = {Complex {Ginzburg-Landau} equations in high dimensions and codimension two area minimizing currents},
     journal = {Journal of the European Mathematical Society},
     pages = {237--311},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {1999},
     doi = {10.1007/s100970050008},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s100970050008/}
}
TY  - JOUR
AU  - Fanghua Lin
AU  - Tristan Rivière
TI  - Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents
JO  - Journal of the European Mathematical Society
PY  - 1999
SP  - 237
EP  - 311
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s100970050008/
DO  - 10.1007/s100970050008
ID  - JEMS_1999_1_3_a0
ER  - 
%0 Journal Article
%A Fanghua Lin
%A Tristan Rivière
%T Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents
%J Journal of the European Mathematical Society
%D 1999
%P 237-311
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s100970050008/
%R 10.1007/s100970050008
%F JEMS_1999_1_3_a0
Fanghua Lin; Tristan Rivière. Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents. Journal of the European Mathematical Society, Tome 1 (1999) no. 3, pp. 237-311. doi : 10.1007/s100970050008. http://geodesic.mathdoc.fr/articles/10.1007/s100970050008/

Cité par Sources :