Characterization of optimal shapes and masses through Monge-Kantorovich equation
Journal of the European Mathematical Society, Tome 3 (2001) no. 2, pp. 139-168
Cet article a éte moissonné depuis la source EMS Press
We study some problems of optimal distribution of masses, and we show that they can be characterized by a suitable Monge-Kantorovich equation. In the case of scalar state functions, we show the equivalence with a mass transport problem, emphasizing its geometrical approach through geodesics. The case of elasticity, where the state function is vector valued, is also considered. In both cases some examples are presented.
@article{JEMS_2001_3_2_a1,
author = {Guy Bouchitt\'e and Giuseppe Buttazzo},
title = {Characterization of optimal shapes and masses through {Monge-Kantorovich} equation},
journal = {Journal of the European Mathematical Society},
pages = {139--168},
year = {2001},
volume = {3},
number = {2},
doi = {10.1007/s100970000027},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s100970000027/}
}
TY - JOUR AU - Guy Bouchitté AU - Giuseppe Buttazzo TI - Characterization of optimal shapes and masses through Monge-Kantorovich equation JO - Journal of the European Mathematical Society PY - 2001 SP - 139 EP - 168 VL - 3 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s100970000027/ DO - 10.1007/s100970000027 ID - JEMS_2001_3_2_a1 ER -
%0 Journal Article %A Guy Bouchitté %A Giuseppe Buttazzo %T Characterization of optimal shapes and masses through Monge-Kantorovich equation %J Journal of the European Mathematical Society %D 2001 %P 139-168 %V 3 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s100970000027/ %R 10.1007/s100970000027 %F JEMS_2001_3_2_a1
Guy Bouchitté; Giuseppe Buttazzo. Characterization of optimal shapes and masses through Monge-Kantorovich equation. Journal of the European Mathematical Society, Tome 3 (2001) no. 2, pp. 139-168. doi: 10.1007/s100970000027
Cité par Sources :