Characterization of optimal shapes and masses through Monge-Kantorovich equation
Journal of the European Mathematical Society, Tome 3 (2001) no. 2, pp. 139-168.

Voir la notice de l'article provenant de la source EMS Press

We study some problems of optimal distribution of masses, and we show that they can be characterized by a suitable Monge-Kantorovich equation. In the case of scalar state functions, we show the equivalence with a mass transport problem, emphasizing its geometrical approach through geodesics. The case of elasticity, where the state function is vector valued, is also considered. In both cases some examples are presented.
DOI : 10.1007/s100970000027
Classification : 49-XX, 28-XX, 90-XX, 00-XX
Keywords:
@article{JEMS_2001_3_2_a1,
     author = {Guy Bouchitt\'e and Giuseppe Buttazzo},
     title = {Characterization of optimal shapes and masses through {Monge-Kantorovich} equation},
     journal = {Journal of the European Mathematical Society},
     pages = {139--168},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2001},
     doi = {10.1007/s100970000027},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s100970000027/}
}
TY  - JOUR
AU  - Guy Bouchitté
AU  - Giuseppe Buttazzo
TI  - Characterization of optimal shapes and masses through Monge-Kantorovich equation
JO  - Journal of the European Mathematical Society
PY  - 2001
SP  - 139
EP  - 168
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s100970000027/
DO  - 10.1007/s100970000027
ID  - JEMS_2001_3_2_a1
ER  - 
%0 Journal Article
%A Guy Bouchitté
%A Giuseppe Buttazzo
%T Characterization of optimal shapes and masses through Monge-Kantorovich equation
%J Journal of the European Mathematical Society
%D 2001
%P 139-168
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s100970000027/
%R 10.1007/s100970000027
%F JEMS_2001_3_2_a1
Guy Bouchitté; Giuseppe Buttazzo. Characterization of optimal shapes and masses through Monge-Kantorovich equation. Journal of the European Mathematical Society, Tome 3 (2001) no. 2, pp. 139-168. doi : 10.1007/s100970000027. http://geodesic.mathdoc.fr/articles/10.1007/s100970000027/

Cité par Sources :