A note on trilinear forms for reducible representations and Beilinson's conjectures
Journal of the European Mathematical Society, Tome 3 (2001) no. 1, pp. 93-104.

Voir la notice de l'article provenant de la source EMS Press

We extend Prasad's results on the existence of trilinear forms on representations of GL2 of a local field, by permitting one or more of the representations to be reducible principal series, with infinite-dimensional irreducible quotient. We apply this in a global setting to compute (unconditionally) the dimensions of the subspaces of motivic cohomology of the product of two modular curves constructed by Beilinson.
DOI : 10.1007/s100970000026
Classification : 11-XX, 00-XX
Keywords:
@article{JEMS_2001_3_1_a2,
     author = {Michael Harris and Anthony J. Scholl},
     title = {A note on trilinear forms for reducible representations and {Beilinson's} conjectures},
     journal = {Journal of the European Mathematical Society},
     pages = {93--104},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2001},
     doi = {10.1007/s100970000026},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s100970000026/}
}
TY  - JOUR
AU  - Michael Harris
AU  - Anthony J. Scholl
TI  - A note on trilinear forms for reducible representations and Beilinson's conjectures
JO  - Journal of the European Mathematical Society
PY  - 2001
SP  - 93
EP  - 104
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s100970000026/
DO  - 10.1007/s100970000026
ID  - JEMS_2001_3_1_a2
ER  - 
%0 Journal Article
%A Michael Harris
%A Anthony J. Scholl
%T A note on trilinear forms for reducible representations and Beilinson's conjectures
%J Journal of the European Mathematical Society
%D 2001
%P 93-104
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s100970000026/
%R 10.1007/s100970000026
%F JEMS_2001_3_1_a2
Michael Harris; Anthony J. Scholl. A note on trilinear forms for reducible representations and Beilinson's conjectures. Journal of the European Mathematical Society, Tome 3 (2001) no. 1, pp. 93-104. doi : 10.1007/s100970000026. http://geodesic.mathdoc.fr/articles/10.1007/s100970000026/

Cité par Sources :