Universality for conformally invariant intersection exponents
Journal of the European Mathematical Society, Tome 2 (2000) no. 4, pp. 291-328
Voir la notice de l'article provenant de la source EMS Press
Abstract. We construct a class of conformally invariant measures on sets (or paths) and we study the critical exponents called intersection exponents associated to these measures. We show that these exponents exist and that they correspond to intersection exponents between planar Brownian motions. More precisely, using the definitions and results of our paper [27], we show that any set defined under such a conformal invariant measure behaves exactly as a pack (containing maybe a non-integer number) of Brownian motions as far as all intersection exponents are concerned. We show how conjectures about exponents for two-dimensional self-avoiding walks and critical percolation clusters can be reinterpreted in terms of conjectures on Brownian exponents.
@article{JEMS_2000_2_4_a0,
author = {Gregory F. Lawler and Wendelin Werner},
title = {Universality for conformally invariant intersection exponents},
journal = {Journal of the European Mathematical Society},
pages = {291--328},
publisher = {mathdoc},
volume = {2},
number = {4},
year = {2000},
doi = {10.1007/s100970000024},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s100970000024/}
}
TY - JOUR AU - Gregory F. Lawler AU - Wendelin Werner TI - Universality for conformally invariant intersection exponents JO - Journal of the European Mathematical Society PY - 2000 SP - 291 EP - 328 VL - 2 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s100970000024/ DO - 10.1007/s100970000024 ID - JEMS_2000_2_4_a0 ER -
%0 Journal Article %A Gregory F. Lawler %A Wendelin Werner %T Universality for conformally invariant intersection exponents %J Journal of the European Mathematical Society %D 2000 %P 291-328 %V 2 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s100970000024/ %R 10.1007/s100970000024 %F JEMS_2000_2_4_a0
Gregory F. Lawler; Wendelin Werner. Universality for conformally invariant intersection exponents. Journal of the European Mathematical Society, Tome 2 (2000) no. 4, pp. 291-328. doi: 10.1007/s100970000024
Cité par Sources :